在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。

image

方程公式:

Y= a + b1X1 + b2X2 + … + bkXk

 

简介

多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。这里只介绍多元线性回归的一些基本问题。

但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。前面学到的标准分就有这个功能,具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。这时的回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下:

Zy= β1Z*1 + β2Z*2 + … + βkZ*k

注意

由于都化成了标准分,所以就不再有常数项 a 了,因为各自变量都取平均水平时,因变量也应该取平均水平,而平均水平正好对应标准分 0 ,当等式两端的变量都取 0 时,常数项也就为 0 了。

posted on   沧海-重庆  阅读(876)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示