python 网络编程
一.定义
由于不同机器上的程序要通信,才产生了网络。
二.软件开发架构
两个程序之间通讯的应用大致可以分为两种:
应用类:需要安装的桌面应用,qq、微信、网盘、优酷。C/S 架构。
web类:用浏览器访问直接使用的应用,百度、知乎、博客园。B/S 架构。
本质都是两个程序之间的通讯。对应了两个软件开发的架构。
server 服务端
client 客户端
服务端 是 要一直运行,等待服务别人。
客户端 是 我用的时候,我才使用服务。
B/S 架构实际上是 C/S 架构的一种。B/S 架构统一入口,方便使用,在PC端更受欢迎。手机端 B/S 正在发展(微信小程序,公众号)。
三.网络基础
两台电脑通信的实现:网卡,网线
网卡:提供网线接口(硬件)。每个网卡有全球唯一的编号-MAC地址(通过MAC找到电脑)。
MAC地址:通常由12位16进制数表示(前六位是厂商编号,后六位是流水线号)。难记
给全球的机器编号(ip地址),更好地记忆。
4个点分十进制
4个8位2进制数 :00000000.00000000.00000000.00000000
0.0.0.0-255.255.255.255
arp协议的作用:通过ip地址 就能 找到对应的 mac地址。属于数据链路层。
过程:寻找某个ip的机器。交换机作为中介,找到机器后获得并缓存MAC地址,进行通信。
多个机器通信的实现:交换机
网络拓扑图:网线连接交换机的方式。
广播:交换机向所有机器发送要求。(上图红色)
单播:符合条件的机器回应交换机。(上图绿色)
广播风暴:太多机器通过交换机进行广播,形成堵塞。
解决办法:路由器。
路由器(Router)又称网关设备(Gateway)是用于连接多个逻辑上分开的网络,所谓逻辑网络是代表一个单独的网络或者一个子网。
路由器具有判断网络地址和选择IP路径的功能。
路由器只接受源站或其他路由器的信息,属网络层的一种互联设备。
不同局域网的机器通过网关通信。
ip地址 和 子网掩码 按位与 得到 局域网的网段地址。
IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络
ip协议属于网络层。
端口:在计算机上,每一个需要网络通信的程序,都会开一个端口。
在同一时间只会有一个程序占用一个端口.
不可能在同一时间,在同一个计算机上有两个程序,占用同一个端口.
端口的范围 : 0-65535
一般情况下用8000之后的端口,前面的端口是系统要用的。
ip -- 确定唯一一台机器 端口 -- 确定唯一的一个程序 ip+端口 -- 找到唯一的一台机器上的唯一的一个程序
# 保留字段 192.168.----一般为内网
# 127.0.0.1 本地的回环地址(不走网线-交换机、路由器)
公网ip(注册可查)全世界可以访问
内网(局域网)ip 不能对外提供服务(别的局域网的机器访问),可以通过网关访问外网。
内网ip想让别人访问,需要申请成为公网ip,即在所有路由注册。
TCP协议
TCP是因特网中的传输层协议,使用三次握手协议建立连接。当主动方发出SYN连接请求后,等待对方回答SYN+ACK[1],并最终对对方的 SYN 执行 ACK 确认。这种建立连接的方法可以防止产生错误的连接。[1] TCP三次握手的过程如下: 客户端发送SYN(SEQ=x)报文给服务器端,进入SYN_SEND状态。 服务器端收到SYN报文,回应一个SYN (SEQ=y)ACK(ACK=x+1)报文,进入SYN_RECV状态。 客户端收到服务器端的SYN报文,回应一个ACK(ACK=y+1)报文,进入Established状态。 三次握手完成,TCP客户端和服务器端成功地建立连接,可以开始传输数据了。
建立一个连接需要三次握手,而终止一个连接要经过四次握手,这是由TCP的半关闭(half-close)造成的。 (1) 某个应用进程首先调用close,称该端执行“主动关闭”(active close)。该端的TCP于是发送一个FIN分节,表示数据发送完毕。 (2) 接收到这个FIN的对端执行 “被动关闭”(passive close),这个FIN由TCP确认。 注意:FIN的接收也作为一个文件结束符(end-of-file)传递给接收端应用进程,放在已排队等候该应用进程接收的任何其他数据之后,因为,FIN的接收意味着接收端应用进程在相应连接上再无额外数据可接收。 (3) 一段时间后,接收到这个文件结束符的应用进程将调用close关闭它的套接字。这导致它的TCP也发送一个FIN。 (4) 接收这个最终FIN的原发送端TCP(即执行主动关闭的那一端)确认这个FIN。[1] 既然每个方向都需要一个FIN和一个ACK,因此通常需要4个分节。 注意: (1) “通常”是指,某些情况下,步骤1的FIN随数据一起发送,另外,步骤2和步骤3发送的分节都出自执行被动关闭那一端,有可能被合并成一个分节。[2] (2) 在步骤2与步骤3之间,从执行被动关闭一端到执行主动关闭一端流动数据是可能的,这称为“半关闭”(half-close)。 (3) 当一个Unix进程无论自愿地(调用exit或从main函数返回)还是非自愿地(收到一个终止本进程的信号)终止时,所有打开的描述符都被关闭,这也导致仍然打开的任何TCP连接上也发出一个FIN。 无论是客户还是服务器,任何一端都可以执行主动关闭。通常情况是,客户执行主动关闭,但是某些协议,例如,HTTP/1.0却由服务器执行主动关闭。[2]
UDP协议
当应用程序希望通过UDP与一个应用程序通信时,传输数据之前源端和终端不建立连接。
当它想传送时就简单地去抓取来自应用程序的数据,并尽可能快地把它扔到网络上。
tcp和udp的对比
TCP---传输控制协议,提供的是面向连接、可靠的字节流服务。当客户和服务器彼此交换数据前,必须先在双方之间建立一个TCP连接,之后才能传输数据。TCP提供超时重发,丢弃重复数据,检验数据,流量控制等功能,保证数据能从一端传到另一端。
UDP---用户数据报协议,是一个简单的面向数据报的运输层协议。UDP不提供可靠性,它只是把应用程序传给IP层的数据报发送出去,但是并不能保证它们能到达目的地。由于UDP在传输数据报前不用在客户和服务器之间建立一个连接,且没有超时重发等机制,故而传输速度很快
互联网协议与osi模型
互联网协议按照功能不同分为osi七层或tcp/ip五层或tcp/ip四层
每层运行常见物理设备
每层运行常见的协议
理解socket
Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面,对用户来说,一组简单的接口就是全部,让Socket去组织数据,以符合指定的协议。
基于文件类型的套接字家族
套接字家族的名字:AF_UNIX
unix一切皆文件,基于文件的套接字调用的就是底层的文件系统来取数据,两个套接字进程运行在同一机器,可以通过访问同一个文件系统间接完成通信
基于网络类型的套接字家族
套接字家族的名字:AF_INET
(还有AF_INET6被用于ipv6,还有一些其他的地址家族,不过,他们要么是只用于某个平台,要么就是已经被废弃,或者是很少被使用,或者是根本没有实现,所有地址家族中,AF_INET是使用最广泛的一个,python支持很多种地址家族,但是由于我们只关心网络编程,所以大部分时候我么只使用AF_INET)
tcp协议和udp协议
四.套接字(socket)初使用
基于TCP协议的socket
tcp是基于链接的,必须先启动服务端,然后再启动客户端去链接服务端
server端
import socket sk = socket.socket() sk.bind(('127.0.0.1',8898)) #把地址绑定到套接字 sk.listen() #监听链接 conn,addr = sk.accept() #接受客户端链接 ret = conn.recv(1024) #接收客户端信息 print(ret) #打印客户端信息 conn.send(b'hi') #向客户端发送信息 conn.close() #关闭客户端套接字 sk.close() #关闭服务器套接字(可选)
client端
import socket sk = socket.socket() # 创建客户套接字 sk.connect(('127.0.0.1',8898)) # 尝试连接服务器 sk.send(b'hello!') ret = sk.recv(1024) # 对话(发送/接收) print(ret) sk.close() # 关闭客户套接字
问题:有的同学在重启服务端时可能会遇到,address already in use
解决方法: #加入一条socket配置,重用ip和端口 import socket from socket import SOL_SOCKET,SO_REUSEADDR sk = socket.socket() sk.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) #就是它,在bind前加 sk.bind(('127.0.0.1',8898)) #把地址绑定到套接字 sk.listen() #监听链接 conn,addr = sk.accept() #接受客户端链接 ret = conn.recv(1024) #接收客户端信息 print(ret) #打印客户端信息 conn.send(b'hi') #向客户端发送信息 conn.close() #关闭客户端套接字 sk.close() #关闭服务器套接字(可选)
基于UDP协议的socket
udp是无链接的,先启动哪一端都不会报错
server端
import socket udp_sk = socket.socket(type=socket.SOCK_DGRAM) #创建一个服务器的套接字 udp_sk.bind(('127.0.0.1',9000)) #绑定服务器套接字 msg,addr = udp_sk.recvfrom(1024) print(msg) udp_sk.sendto(b'hi',addr) # 对话(接收与发送) udp_sk.close() # 关闭服务器套接字
client端
import socket ip_port=('127.0.0.1',9000) udp_sk=socket.socket(type=socket.SOCK_DGRAM) udp_sk.sendto(b'hello',ip_port) back_msg,addr=udp_sk.recvfrom(1024) print(back_msg.decode('utf-8'),addr)
socket参数的详解
socket.socket(family=AF_INET,type=SOCK_STREAM,proto=0,fileno=None)
五.黏包
同时执行多条命令之后,得到的结果很可能只有一部分,在执行其他命令的时候又接收到之前执行的另外一部分结果,这种显现就是黏包。
注意:只有TCP有粘包现象,UDP永远不会粘包
黏包成因
TCP协议中的数据传递
tcp协议的拆包机制
当发送端缓冲区的长度大于网卡的MTU时,tcp会将这次发送的数据拆成几个数据包发送出去。
MTU是Maximum Transmission Unit的缩写。意思是网络上传送的最大数据包。MTU的单位是字节。 大部分网络设备的MTU都是1500。如果本机的MTU比网关的MTU大,大的数据包就会被拆开来传送,这样会产生很多数据包碎片,
增加丢包率,降低网络速度。
面向流的通信特点和Nagle算法
TCP(transport control protocol,传输控制协议)是面向连接的,面向流的,提供高可靠性服务。
收发两端(客户端和服务器端)都要有一一成对的socket,因此,发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化方法(Nagle算法),将多次间隔较小且数据量小的数据,合并成一个大的数据块,然后进行封包。
这样,接收端,就难于分辨出来了,必须提供科学的拆包机制。 即面向流的通信是无消息保护边界的。
对于空消息:tcp是基于数据流的,于是收发的消息不能为空,这就需要在客户端和服务端都添加空消息的处理机制,防止程序卡住,而udp是基于数据报的,即便是你输入的是空内容(直接回车),也可以被发送,udp协议会帮你封装上
消息头发送过去。
可靠黏包的tcp协议:tcp的协议数据不会丢,没有收完包,下次接收,会继续上次继续接收,己端总是在收到ack时才会清除缓冲区内容。数据是可靠的,但是会粘包。
基于tcp协议特点的黏包现象成因
发送端可以是一K一K地发送数据,而接收端的应用程序可以两K两K地提走数据,当然也有可能一次提走3K或6K数据,或者一次只提走几个字节的数据。
也就是说,应用程序所看到的数据是一个整体,或说是一个流(stream),一条消息有多少字节对应用程序是不可见的,因此TCP协议是面向流的协议,这也是容易出现粘包问题的原因。
而UDP是面向消息的协议,每个UDP段都是一条消息,应用程序必须以消息为单位提取数据,不能一次提取任意字节的数据,这一点和TCP是很不同的。
怎样定义消息呢?可以认为对方一次性write/send的数据为一个消息,需要明白的是当对方send一条信息的时候,无论底层怎样分段分片,TCP协议层会把构成整条消息的数据段排序完成后才呈现在内核缓冲区。
例如基于tcp的套接字客户端往服务端上传文件,发送时文件内容是按照一段一段的字节流发送的,在接收方看了,根本不知道该文件的字节流从何处开始,在何处结束
此外,发送方引起的粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一个TCP段。若连续几次需要send的数据都很少,通常TCP会根据优化算法把这些数据合成一个TCP段后一次发送出去,这样接收方就收到了粘包数据。
UDP不会发生黏包
UDP(user datagram protocol,用户数据报协议)是无连接的,面向消息的,提供高效率服务。
不会使用块的合并优化算法,, 由于UDP支持的是一对多的模式,所以接收端的skbuff(套接字缓冲区)采用了链式结构来记录每一个到达的UDP包,在每个UDP包中就有了消息头(消息来源地址,端口等信息),这样,对于接收端来说,就容易进行区分处理了。 即面向消息的通信是有消息保护边界的。
对于空消息:tcp是基于数据流的,于是收发的消息不能为空,这就需要在客户端和服务端都添加空消息的处理机制,防止程序卡住,而udp是基于数据报的,即便是你输入的是空内容(直接回车),也可以被发送,udp协议会帮你封装上消息头发送过去。
不可靠不黏包的udp协议:udp的recvfrom是阻塞的,一个recvfrom(x)必须对唯一一个sendinto(y),收完了x个字节的数据就算完成,若是y;x数据就丢失,这意味着udp根本不会粘包,但是会丢数据,不可靠。
用UDP协议发送时,用sendto函数最大能发送数据的长度为:65535- IP头(20) – UDP头(8)=65507字节。用sendto函数发送数据时,如果发送数据长度大于该值,则函数会返回错误。(丢弃这个包,不进行发送) 用TCP协议发送时,由于TCP是数据流协议,因此不存在包大小的限制(暂不考虑缓冲区的大小),这是指在用send函数时,数据长度参数不受限制。而实际上,所指定的这段数据并不一定会一次性发送出去,如果这段数据比较长,会被分段发送,如果比较短,可能会等待和下一次数据一起发送。
会发生黏包的两种情况
情况一 发送方的缓存机制
发送端需要等缓冲区满才发送出去,造成粘包(发送数据时间间隔很短,数据了很小,会合到一起,产生粘包)
server #_*_coding:utf-8_*_ from socket import * ip_port=('127.0.0.1',8080) tcp_socket_server=socket(AF_INET,SOCK_STREAM) tcp_socket_server.bind(ip_port) tcp_socket_server.listen(5) conn,addr=tcp_socket_server.accept() data1=conn.recv(10) data2=conn.recv(10) print('----->',data1.decode('utf-8')) print('----->',data2.decode('utf-8')) conn.close() client #_*_coding:utf-8_*_ import socket BUFSIZE=1024 ip_port=('127.0.0.1',8080) s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) res=s.connect_ex(ip_port) s.send('hello'.encode('utf-8')) s.send('egg'.encode('utf-8'))
情况二 接收方的缓存机制
接收方不及时接收缓冲区的包,造成多个包接收(客户端发送了一段数据,服务端只收了一小部分,服务端下次再收的时候还是从缓冲区拿上次遗留的数据,产生粘包)
server #_*_coding:utf-8_*_ from socket import * ip_port=('127.0.0.1',8080) tcp_socket_server=socket(AF_INET,SOCK_STREAM) tcp_socket_server.bind(ip_port) tcp_socket_server.listen(5) conn,addr=tcp_socket_server.accept() data1=conn.recv(2) #一次没有收完整 data2=conn.recv(10)#下次收的时候,会先取旧的数据,然后取新的 print('----->',data1.decode('utf-8')) print('----->',data2.decode('utf-8')) conn.close() client #_*_coding:utf-8_*_ import socket BUFSIZE=1024 ip_port=('127.0.0.1',8080) s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) res=s.connect_ex(ip_port) s.send('hello egg'.encode('utf-8'))
总结
黏包现象只发生在tcp协议中:(且连续进行发送、接受时)
1.从表面上看,黏包问题主要是因为发送方和接收方的缓存机制、tcp协议面向流通信的特点。
2.实际上,主要还是因为接收方不知道消息之间的界限,不知道一次性提取多少字节的数据所造成的
黏包的解决方案
解决方案一
问题的根源在于,接收端不知道发送端将要传送的字节流的长度,所以解决粘包的方法就是围绕,如何让发送端在发送数据前,把自己将要发送的字节流总大小让接收端知晓,然后接收端来一个死循环接收完所有数据。
服务端 #_*_coding:utf-8_*_ import socket,subprocess ip_port=('127.0.0.1',8080) s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind(ip_port) s.listen(5) while True: conn,addr=s.accept() print('客户端',addr) while True: msg=conn.recv(1024) if not msg:break res=subprocess.Popen(msg.decode('utf-8'),shell=True,\ stdin=subprocess.PIPE,\ stderr=subprocess.PIPE,\ stdout=subprocess.PIPE) err=res.stderr.read() if err: ret=err else: ret=res.stdout.read() data_length=len(ret) conn.send(str(data_length).encode('utf-8')) data=conn.recv(1024).decode('utf-8') if data == 'recv_ready': conn.sendall(ret) conn.close() 客户端 #_*_coding:utf-8_*_ import socket,time s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) res=s.connect_ex(('127.0.0.1',8080)) while True: msg=input('>>: ').strip() if len(msg) == 0:continue if msg == 'quit':break s.send(msg.encode('utf-8')) length=int(s.recv(1024).decode('utf-8')) s.send('recv_ready'.encode('utf-8')) send_size=0 recv_size=0 data=b'' while recv_size < length: data+=s.recv(1024) recv_size+=len(data) print(data.decode('utf-8'))
存在的问题: 程序的运行速度远快于网络传输速度,所以在发送一段字节前,先用send去发送该字节流长度,这种方式会放大网络延迟带来的性能损耗。
解决方案进阶
刚刚的方法,问题在于我们的发送
我们可以借助一个模块,这个模块可以把要发送的数据长度转换成固定长度的字节。这样客户端每次接收消息之前只要先接受这个固定长度字节的内容看一看接下来要接收的信息大小,那么最终接受的数据只要达到这个值就停止,就能刚好不多不少的接收完整的数据了。
struct模块
该模块可以把一个类型,如数字,转成固定长度的bytes
>>> struct.pack('i',1111111111111) struct.error: 'i' format requires -2147483648 <= number <= 2147483647 #这个是范围
import json,struct #假设通过客户端上传1T:1073741824000的文件a.txt #为避免粘包,必须自定制报头 header={'file_size':1073741824000,'file_name':'/a/b/c/d/e/a.txt','md5':'8f6fbf8347faa4924a76856701edb0f3'} #1T数据,文件路径和md5值 #为了该报头能传送,需要序列化并且转为bytes head_bytes=bytes(json.dumps(header),encoding='utf-8') #序列化并转成bytes,用于传输 #为了让客户端知道报头的长度,用struck将报头长度这个数字转成固定长度:4个字节 head_len_bytes=struct.pack('i',len(head_bytes)) #这4个字节里只包含了一个数字,该数字是报头的长度 #客户端开始发送 conn.send(head_len_bytes) #先发报头的长度,4个bytes conn.send(head_bytes) #再发报头的字节格式 conn.sendall(文件内容) #然后发真实内容的字节格式 #服务端开始接收 head_len_bytes=s.recv(4) #先收报头4个bytes,得到报头长度的字节格式 x=struct.unpack('i',head_len_bytes)[0] #提取报头的长度 head_bytes=s.recv(x) #按照报头长度x,收取报头的bytes格式 header=json.loads(json.dumps(header)) #提取报头 #最后根据报头的内容提取真实的数据,比如 real_data_len=s.recv(header['file_size']) s.recv(real_data_len)
使用struct解决黏包
借助struct模块,我们知道长度数字可以被转换成一个标准大小的4字节数字。因此可以利用这个特点来预先发送数据长度。
import socket,struct,json import subprocess phone=socket.socket(socket.AF_INET,socket.SOCK_STREAM) phone.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1) #就是它,在bind前加 phone.bind(('127.0.0.1',8080)) phone.listen(5) while True: conn,addr=phone.accept() while True: cmd=conn.recv(1024) if not cmd:break print('cmd: %s' %cmd) res=subprocess.Popen(cmd.decode('utf-8'), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) err=res.stderr.read() print(err) if err: back_msg=err else: back_msg=res.stdout.read() conn.send(struct.pack('i',len(back_msg))) #先发back_msg的长度 conn.sendall(back_msg) #在发真实的内容 conn.close()
#_*_coding:utf-8_*_ import socket,time,struct s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) res=s.connect_ex(('127.0.0.1',8080)) while True: msg=input('>>: ').strip() if len(msg) == 0:continue if msg == 'quit':break s.send(msg.encode('utf-8')) l=s.recv(4) x=struct.unpack('i',l)[0] print(type(x),x) # print(struct.unpack('I',l)) r_s=0 data=b'' while r_s < x: r_d=s.recv(1024) data+=r_d r_s+=len(r_d) # print(data.decode('utf-8')) print(data.decode('gbk')) #windows默认gbk编码
我们还可以把报头做成字典,字典里包含将要发送的真实数据的详细信息,然后json序列化,然后用struck将序列化后的数据长度打包成4个字节(4个自己足够用了)
import socket,struct,json import subprocess phone=socket.socket(socket.AF_INET,socket.SOCK_STREAM) phone.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1) #就是它,在bind前加 phone.bind(('127.0.0.1',8080)) phone.listen(5) while True: conn,addr=phone.accept() while True: cmd=conn.recv(1024) if not cmd:break print('cmd: %s' %cmd) res=subprocess.Popen(cmd.decode('utf-8'), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) err=res.stderr.read() print(err) if err: back_msg=err else: back_msg=res.stdout.read() headers={'data_size':len(back_msg)} head_json=json.dumps(headers) head_json_bytes=bytes(head_json,encoding='utf-8') conn.send(struct.pack('i',len(head_json_bytes))) #先发报头的长度 conn.send(head_json_bytes) #再发报头 conn.sendall(back_msg) #在发真实的内容 conn.close()
from socket import * import struct,json ip_port=('127.0.0.1',8080) client=socket(AF_INET,SOCK_STREAM) client.connect(ip_port) while True: cmd=input('>>: ') if not cmd:continue client.send(bytes(cmd,encoding='utf-8')) head=client.recv(4) head_json_len=struct.unpack('i',head)[0] head_json=json.loads(client.recv(head_json_len).decode('utf-8')) data_len=head_json['data_size'] recv_size=0 recv_data=b'' while recv_size < data_len: recv_data+=client.recv(1024) recv_size+=len(recv_data) print(recv_data.decode('utf-8')) #print(recv_data.decode('gbk')) #windows默认gbk编码
六.socket的更多方法介绍
服务端套接字函数
s.bind() 绑定(主机,端口号)到套接字
s.listen() 开始TCP监听
s.accept() 被动接受TCP客户的连接,(阻塞式)等待连接的到来
客户端套接字函数
s.connect() 主动初始化TCP服务器连接
s.connect_ex() connect()函数的扩展版本,出错时返回出错码,而不是抛出异常
公共用途的套接字函数
s.recv() 接收TCP数据
s.send() 发送TCP数据
s.sendall() 发送TCP数据
s.recvfrom() 接收UDP数据
s.sendto() 发送UDP数据
s.getpeername() 连接到当前套接字的远端的地址
s.getsockname() 当前套接字的地址
s.getsockopt() 返回指定套接字的参数
s.setsockopt() 设置指定套接字的参数
s.close() 关闭套接字
面向锁的套接字方法
s.setblocking() 设置套接字的阻塞与非阻塞模式
s.settimeout() 设置阻塞套接字操作的超时时间
s.gettimeout() 得到阻塞套接字操作的超时时间
面向文件的套接字的函数
s.fileno() 套接字的文件描述符
s.makefile() 创建一个与该套接字相关的文件
官方文档对socket模块下的socket.send()和socket.sendall()解释如下: socket.send(string[, flags]) Send data to the socket. The socket must be connected to a remote socket. The optional flags argument has the same meaning as for recv() above. Returns the number of bytes sent. Applications are responsible for checking that all data has been sent; if only some of the data was transmitted, the application needs to attempt delivery of the remaining data. send()的返回值是发送的字节数量,这个数量值可能小于要发送的string的字节数,也就是说可能无法发送string中所有的数据。如果有错误则会抛出异常。 – socket.sendall(string[, flags]) Send data to the socket. The socket must be connected to a remote socket. The optional flags argument has the same meaning as for recv() above. Unlike send(), this method continues to send data from string until either all data has been sent or an error occurs. None is returned on success. On error, an exception is raised, and there is no way to determine how much data, if any, was successfully sent. 尝试发送string的所有数据,成功则返回None,失败则抛出异常。 故,下面两段代码是等价的: #sock.sendall('Hello world\n') #buffer = 'Hello world\n' #while buffer: # bytes = sock.send(buffer) # buffer = buffer[bytes:]
七.验证客户端链接的合法性
如果你想在分布式系统中实现一个简单的客户端链接认证功能,又不像SSL那么复杂,那么利用hmac+加盐的方式来实现
#_*_coding:utf-8_*_ from socket import * import hmac,os secret_key=b'linhaifeng bang bang bang' def conn_auth(conn): ''' 认证客户端链接 :param conn: :return: ''' print('开始验证新链接的合法性') msg=os.urandom(32) conn.sendall(msg) h=hmac.new(secret_key,msg) digest=h.digest() respone=conn.recv(len(digest)) return hmac.compare_digest(respone,digest) def data_handler(conn,bufsize=1024): if not conn_auth(conn): print('该链接不合法,关闭') conn.close() return print('链接合法,开始通信') while True: data=conn.recv(bufsize) if not data:break conn.sendall(data.upper()) def server_handler(ip_port,bufsize,backlog=5): ''' 只处理链接 :param ip_port: :return: ''' tcp_socket_server=socket(AF_INET,SOCK_STREAM) tcp_socket_server.bind(ip_port) tcp_socket_server.listen(backlog) while True: conn,addr=tcp_socket_server.accept() print('新连接[%s:%s]' %(addr[0],addr[1])) data_handler(conn,bufsize) if __name__ == '__main__': ip_port=('127.0.0.1',9999) bufsize=1024 server_handler(ip_port,bufsize)
#_*_coding:utf-8_*_ __author__ = 'Linhaifeng' from socket import * import hmac,os secret_key=b'linhaifeng bang bang bang' def conn_auth(conn): ''' 验证客户端到服务器的链接 :param conn: :return: ''' msg=conn.recv(32) h=hmac.new(secret_key,msg) digest=h.digest() conn.sendall(digest) def client_handler(ip_port,bufsize=1024): tcp_socket_client=socket(AF_INET,SOCK_STREAM) tcp_socket_client.connect(ip_port) conn_auth(tcp_socket_client) while True: data=input('>>: ').strip() if not data:continue if data == 'quit':break tcp_socket_client.sendall(data.encode('utf-8')) respone=tcp_socket_client.recv(bufsize) print(respone.decode('utf-8')) tcp_socket_client.close() if __name__ == '__main__': ip_port=('127.0.0.1',9999) bufsize=1024 client_handler(ip_port,bufsize)
#_*_coding:utf-8_*_ __author__ = 'Linhaifeng' from socket import * def client_handler(ip_port,bufsize=1024): tcp_socket_client=socket(AF_INET,SOCK_STREAM) tcp_socket_client.connect(ip_port) while True: data=input('>>: ').strip() if not data:continue if data == 'quit':break tcp_socket_client.sendall(data.encode('utf-8')) respone=tcp_socket_client.recv(bufsize) print(respone.decode('utf-8')) tcp_socket_client.close() if __name__ == '__main__': ip_port=('127.0.0.1',9999) bufsize=1024 client_handler(ip_port,bufsize)
#_*_coding:utf-8_*_ __author__ = 'Linhaifeng' from socket import * import hmac,os secret_key=b'linhaifeng bang bang bang1111' def conn_auth(conn): ''' 验证客户端到服务器的链接 :param conn: :return: ''' msg=conn.recv(32) h=hmac.new(secret_key,msg) digest=h.digest() conn.sendall(digest) def client_handler(ip_port,bufsize=1024): tcp_socket_client=socket(AF_INET,SOCK_STREAM) tcp_socket_client.connect(ip_port) conn_auth(tcp_socket_client) while True: data=input('>>: ').strip() if not data:continue if data == 'quit':break tcp_socket_client.sendall(data.encode('utf-8')) respone=tcp_socket_client.recv(bufsize) print(respone.decode('utf-8')) tcp_socket_client.close() if __name__ == '__main__': ip_port=('127.0.0.1',9999) bufsize=1024 client_handler(ip_port,bufsize)
八.socketserver
import socketserver class Myserver(socketserver.BaseRequestHandler): def handle(self): self.data = self.request.recv(1024).strip() print("{} wrote:".format(self.client_address[0])) print(self.data) self.request.sendall(self.data.upper()) if __name__ == "__main__": HOST, PORT = "127.0.0.1", 9999 # 设置allow_reuse_address允许服务器重用地址 socketserver.TCPServer.allow_reuse_address = True # 创建一个server, 将服务地址绑定到127.0.0.1:9999 server = socketserver.TCPServer((HOST, PORT),Myserver) # 让server永远运行下去,除非强制停止程序 server.serve_forever()
import socket HOST, PORT = "127.0.0.1", 9999 data = "hello" # 创建一个socket链接,SOCK_STREAM代表使用TCP协议 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: sock.connect((HOST, PORT)) # 链接到客户端 sock.sendall(bytes(data + "\n", "utf-8")) # 向服务端发送数据 received = str(sock.recv(1024), "utf-8")# 从服务端接收数据 print("Sent: {}".format(data)) print("Received: {}".format(received))
小结
网络编程 互联网协议 —— 七层 :osi协议 五层 应用层 python 传输层 tcp/udp 网络层 ip 路由器 数据链路层 arp 交换机 物理层 网卡 双绞线 arp 通过ip找mac地址 交换机 :广播 单播 组播 ip协议 :ip地址的格式 ip地址 一台机器在一个网络内唯一的标识 子网掩码 ip地址与子网掩码做按位与运算,得到的结果是网段 网关ip 局域网内的机器访问公网ip,就通过网关访问 tcp 面向流的 可靠 全双工 三次握手 四次挥手 —— 黏包 udp 面向数据包 不可靠 黏包 什么是黏包 怎么解决 在发送信息信息之前 先告诉对方要发的数据有多大 struct模块将要发送数据的大小固定化,无论如何就发4个字节 自定义协议的概念 验证客户端合法性 hmac 处理并发问题 socketserver