loj #143. 质数判定
\(\color{#0066ff}{ 题目描述 }\)
判定输入的数是不是质数。
\(\color{#0066ff}{输入格式}\)
若干行,一行一个数 \(x\)。
行数不超过 \(10^5\)。
\(\color{#0066ff}{输出格式}\)
对于输入的每一行,如果 \(x\) 是质数输出一行 \(Y\),否则输出一行 \(N\)。
\(\color{#0066ff}{输入样例}\)
1
2
6
9
666623333
\(\color{#0066ff}{输出样例}\)
N
Y
N
N
Y
\(\color{#0066ff}{数据范围与提示}\)
\(1≤x≤10^{18}\)。
\(\color{#0066ff}{ 题解 }\)
就是个Miller Rabbin的板子题
详解
#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
int prime[] = {2, 3, 5, 7, 11, 61, 24251};
LL msc(LL x, LL y, LL mod) {
x %= mod;
y %= mod;
LL c = (long double)x / mod * y;
LL d = x * y - c * mod;
return ((d % mod) + mod) % mod;
}
LL ksm(LL x, LL y, LL mod) {
LL re = 1LL;
while(y) {
if(y & 1) re = msc(re, x, mod);
x = msc(x, x, mod);
y >>= 1;
}
return (re + mod) % mod;
}
bool judge(LL a, LL p) {
LL s = p - 1;
while(!(s & 1)) s >>= 1;
LL k = ksm(a, s, p);
while (s != p - 1 && k != 1 && k != p - 1) k = msc(k, k, p), s <<= 1;
return (k == p - 1) || ((s & 1));
}
bool judge(LL n) {
if(n == 1) return false;
for(int i = 0; i < 7; i++) {
if(n == prime[i]) return true;
if(n % prime[i] == 0) return false;
if(!judge(prime[i], n)) return false;
}
for(int i = 1; i <= 10; i++) if(!judge(2 + rand() % (n - 2), n)) return false;
return true;
}
int main() {
LL n;
while(~scanf("%lld", &n)) printf(judge(n)? "Y\n" : "N\n");
return 0;
}
----olinr