BZOJ 3028: 食物
\(\color{#0066ff}{ 题目描述 }\)
明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应
该带一些什么东西。理所当然的,你当然要帮他计算携带N件物品的方案数。他这次又准备带一些受欢迎的食物,
如:蜜桃多啦,鸡块啦,承德汉堡等等当然,他又有一些稀奇古怪的限制:每种食物的限制如下:
承德汉堡:偶数个
可乐:0个或1个
鸡腿:0个,1个或2个
蜜桃多:奇数个
鸡块:4的倍数个
包子:0个,1个,2个或3个
土豆片炒肉:不超过一个。
面包:3的倍数个
注意,这里我们懒得考虑明明对于带的食物该怎么搭配着吃,也认为每种食物都是以‘个’为单位(反正是幻想嘛
),只要总数加起来是N就算一种方案。因此,对于给出的N,你需要计算出方案数,并对10007取模。
\(\color{#0066ff}{输入格式}\)
输入一个数字N,1<=n<=\(10^{500}\)
\(\color{#0066ff}{输出格式}\)
如题
\(\color{#0066ff}{输入样例}\)
1
5
\(\color{#0066ff}{输出样例}\)
1
35
\(\color{#0066ff}{数据范围与提示}\)
none
\(\color{#0066ff}{ 题解 }\)
生成函数
\(ans = (x^0+x^2+x^4+x^6...)*(x^0+x^1)*(x^0+x^1+x^2)*(x^1+x^3+x^5...)*(x^0+x^4+x^8...)*(x^0+x^1+x^2+x^3)*(x^0+x^1)*(x^0+x^3+x^6...)\)的第n项系数
因为有\(x^0+x^1+x^2+x^3+...=\frac{1}{1-x}\)
所以原式为\(ans = (\frac{1}{1-x^2})*(1+x)*(1+x+x^2)*(\frac{x}{1-x^2})*(\frac{1}{1-x^4})*(1+x+x^2+x^3)*(1+x)*(\frac{1}{1-x^3})\)
还有一些项可以等比数列求和
\(ans = \frac{1}{1-x^2}*\frac{1-x^2}{1-x}*\frac{1-x^3}{1-x}*\frac{x}{1-x^2}*\frac{1}{1-x^4}*\frac{1-x^4}{1-x}*\frac{1-x^2}{1-x}*\frac{1}{1-x^3}\)
大力约分
\(ans = \frac{x}{(1-x^4)}\)的n次方项系数
这个怎么搞呢?
因为\(\begin{aligned}\frac{1}{(1-x)^{n + 1}}=\sum_{i\ge 0}C_{n+i}^i x^i\end{aligned}\)
因此可以化为\(ans=x*\begin{aligned}\sum_{i\ge 0}C_{3+i}^i x^i\end{aligned}\)
把x弄进去\(ans=\begin{aligned}\sum_{i\ge 0}C_{3+i}^i x^{i +1}\end{aligned}\)
改变一下i的枚举\(ans=\begin{aligned}\sum_{i\ge 1}C_{2+i}^{i - 1} x^{i}\end{aligned}\)
则$ans=\begin{aligned}\sum_{i\ge 1}C_{2+i}^{i - 1} x{i}\end{aligned}的第n项系数=C_{2+n} =C_{2+n}^{3} $
然后就没有然后了,暴力组合数展开。。。qwq
#include<bits/stdc++.h>
#define LL long long
const int mod = 10007;
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = ((x << 1) + (x << 3) + (ch ^ 48)) % mod);
return x * f;
}
int main() {
LL n = in();
printf("%lld\n", (n * (n + 1) * (n + 2) / 6) % mod);
return 0;
}
----olinr