分片/分库分表

  • 需求分析
    • 用户请求量太大 -> 分布式服务器(分散请求到多个服务器上)
    • 单库太大 单库所在服务器上磁盘空间不足;处理能力有限;出现IO瓶颈
    • 单表太大 -> CRUD都成问题, 索引膨胀, 查询超时
  • 作用
    • 共同组成完整的数据集合, 扩充单机存储的容量上限, 读写速度上限
  • 每个服务器节点称为分片
  • 优点 高吞吐
    • 吞吐量越高, 同一时间数据的读写完成量越高
    • 一个节点可能单日吞吐量只能到达1TB(受硬件限制, 硬盘速度有限)

垂直拆分

  • 垂直分表
    • 按字段将一张表拆分成多张表
  • 垂直分库
    • 将一个数据库中的多张表拆分到多个数据库(节点)中
  • 项目处理
    • 用户数据垂直分表 user_basic user_profile
    • 文章数据垂直分表(文章内容较长且只在详情页才需要) article_basic article_content
    • 后续如果垂直分库
      • 需要将有关联性的表放在同一个库中, 比如用户相关的放在数据库1, 文章相关的放在数据库2

水平拆分

  • 水平分表
    • 将1000万条记录分成两张表
    • 分表方式 按时间/id/地理/hash取模 分表
  • 水平分库分表 水平分表后, 将分表分散放在多个数据库节点
  • 分布式ID
    • 需求: 水平分表后, 需要保证多表id不会出现冲突
    • 解决方案
      • UUID 通用唯一识别码 缺点: 较长,不会趋势递增(主键如果不是递增的, 索引效率会比较低)
      • 数据库主键自增
        • 方案1 单独数据库 只负责生成主键 缺点:一旦宕机, 全局瘫痪
        • 方案2 设置自增步长 所有表都使用相同的步长 缺点: 分片规则不能修改, 无法扩展
      • Redis
        • incr("user_id") 返回的值自增
        • 不会出现资源抢夺问题, 因为redis是单线程的, 可以保证原子性
        • 缺点
          • redis宕机
          • redis易数据丢失
      • 雪花算法-Snowflake
        • twitter提出的算法, 目的是生成一个64位的整数

        • 缺点: 时间回拨, 机器的原因时间可能出现偏差, 虽然会同步进行校正, 但生成时可能是错误的

          • 如果发生回拨(当前时间<记录的时间),算法会自动抛出异常, 可以让用户稍等一会儿
          • 取消同步ntp时间
        • 项目中的应用

          • 用户id 文章id 评论id 后期数据量可能会很大
  • 前期数据量和请求次数少时, 不要做分片
posted @ 2019-08-25 09:39  太虚真人  阅读(634)  评论(0编辑  收藏  举报