CF1097D Makoto and a Blackboard(期望)

link

题目大意:给您一个数 n, 每次从n的所有约数(包含1、n)中等概率选出一个约数替换n,重复操作k次,求最后结果期望值%1e9+7。

题解:考虑暴力,我们设f(n,k)代表答案,则有f(n,k)=sum_{d|n}f(d,k-1)。f(n,0)=n。

我们发现如果把n分解质因数,最后结果就是所有质因子若干次方结果乘积(f是积性函数)。

分解质因数后,我们设g(n,k)代表p^n次方执行k次的结果,由于n是log级别的,所以可以直接dp了。

最后得到了p^0…p^n的分布,加起来乘到答案里就行了。

代码

#include <cstdio>
using namespace std;

const int xkj = 1000000007;

long long n, k, tmp;
long long d[30];
int p[30], tot;
int f[60], g[60], inv[60];

int qpow(int x, int y)
{
	int res = 1;
	for (x %= xkj; y > 0; y >>= 1, x = x * (long long)x % xkj)
		if (y & 1) res = res * (long long)x % xkj;
	return res;
}

int work(long long p, int m)
{
	for (int i = 0; i < m; i++) f[i] = 0;
	f[m] = 1;
	for (int t = 1; t <= k; t++)
	{
		for (int i = 0; i <= m; i++) g[i] = 0;
		for (int i = 0; i <= m; i++)
		{
			f[i] = f[i] * (long long)inv[i + 1] % xkj;
			for (int j = 0; j <= i; j++)
			{
				g[j] = (g[j] + f[i]) % xkj;
			}
		}
		for (int i = 0; i <= m; i++) f[i] = g[i];
	}
	int res = 0, tmp = 1; p %= xkj;
	for (int j = 0; j <= m; j++) res = (res + f[j] * (long long)tmp % xkj) % xkj, tmp = tmp * p % xkj;
	return res;
}

int main()
{
	scanf("%lld%lld", &n, &k); tmp = n;
	for (int i = 0; i < 60; i++) inv[i] = qpow(i, xkj - 2);
	for (int i = 2; i * (long long)i <= n; i++)
	{
		if (tmp % i == 0)
		{
			d[++tot] = i, p[tot] = 1, tmp /= i;
			while (tmp % i == 0) tmp /= i, p[tot]++;
		}
	}
	if (tmp > 1) d[++tot] = tmp, p[tot] = 1;
	int ans = 1;
	for (int i = 1; i <= tot; i++) ans = ans * (long long)work(d[i], p[i]) % xkj;
	printf("%d\n", ans);
	return 0;
}

 

posted @ 2019-03-25 21:17  ghj1222  阅读(186)  评论(0编辑  收藏  举报