拉格朗日反演
1.幂级数的复合
对于幂级数\(F(x)\)和\(G(x)\),我们称\(F(G(x))\)为幂级数F和G的复合
2.复合逆:
如果\(F(x)\)和\(G(x)\)满足\(F(G(x))=G(F(x))=x\)则称它们互为复合逆
3.拉格朗日反演:
如果\(F(x)\)和\(G(x)\)互为复合逆,则有\([x^n]G(x)=\frac1n[x^{n-1}](\frac{1}{F(x)/x})^n\)
可以通过这个在\(O(n\log n)\)(多项式exp和ln求快速幂,巨大常数)或\(O(n\log^2n)\)(倍增快速幂,小常数)来求复合逆的某一项(如果求整个复合逆的最优复杂度为\(O(n^2)\)的大步小步思想)
一下为多项式倍增快速幂取模和拉格朗日反演的板子,可以配合ghj1222的多项式板子食用
void poly_qpow(int *a, int len, int n)
{
int *tmp = new int[len * 2];
for (int i = 0; i < len * 2; i++) tmp[i] = i >= len ? 0 : a[i], a[i] = (i == 0);
while (n > 0)
{
ntt(tmp, len * 2, 1);
if (n & 1)
{
ntt(a, len * 2, 1);
for (int i = 0; i < len * 2; i++) a[i] = a[i] * (long long)tmp[i] % p;
ntt(a, len * 2, -1);
for (int i = len; i < len * 2; i++) a[i] = 0;
}
for (int i = 0; i < len * 2; i++) tmp[i] = tmp[i] * (long long)tmp[i] % p;
ntt(tmp, len * 2, -1);
for (int i = len; i < len * 2; i++) tmp[i] = 0;
n >>= 1;
}
delete []tmp;
}
int lagrange_inversion(int *aa, int len, int n)
{
int *a = new int[len * 2];
for (int i = 0; i < len; i++) a[i] = aa[i];
for (int i = len; i < len * 2; i++) a[i] = 0;
for (int i = 1; i < len; i++) a[i - 1] = a[i];
poly_inv(a, len);
poly_qpow(a, len, n);
int ans = a[n - 1] * (long long)qpow(n, p - 2) % p;
delete []a;
return ans;
}