xgboost使用小结
一、参考文献:
xgboost核心手册:https://xgboost.readthedocs.io/en/stable/
scikit-learn:https://scikit-learn.org/stable/
两个不错的教学视频:
https://www.youtube.com/watch?v=GrJP9FLV3FE
https://www.youtube.com/watch?v=OtD8wVaFm6E
视频作者Josh Starmer的其他专辑也很精彩:
a. 机器学习系列: https://www.youtube.com/playlist?list=PLblh5JKOoLUICTaGLRoHQDuF_7q2GfuJF
b. 深度学习-神经网络系列:https://www.youtube.com/playlist?list=PLblh5JKOoLUIxGDQs4LFFD--41Vzf-ME1
其他参考文献:
1. https://www.jianshu.com/p/9de0f73efc4c 使用Xgboost进行回归
2. https://zhuanlan.zhihu.com/p/374399558/ 线性回归模型总结
3. https://zhuanlan.zhihu.com/p/562983875 xgboost详解
4. https://zhuanlan.zhihu.com/p/389399280 深度学习-回归问题
5. https://mp.weixin.qq.com/s?__biz=MzA4ODcwOTExMQ==&mid=2655687562&idx=6&sn=704589449b438474928a6d5736c2dc91 7大经典回归问题
6. https://zhuanlan.zhihu.com/p/546048176?utm_id=0 xgboost常见特征归一化
二、xgboost回归demo
1. 加载样本
data = pd.read_csv("data/tt.csv", header=[0]) data_train = data[0:int(len(data) * 9 / 10)] data_test = data[int(len(data) * 9 / 10):len(data)] train_x = np.array(data_train.iloc[:, [i for i in range(data_train.shape[1]-1)]]) train_y = np.array(data_train['col_67']) test_x = np.array(data_test.iloc[:, [i for i in range(data_test.shape[1]-1)]]) test_y = np.array(data_test['col_67'])
2. 模型参数
1 2 3 4 5 6 7 8 | xgb_model = xgb.XGBRegressor( max_depth = 6 , learning_rate = 0.05 , n_estimators = 150 , objective = 'reg:squarederror' , booster = 'gbtree' , random_state = 0 ) |
3. 模型拟合/训练
1 | reg_model = xgb_model.fit(train_x, train_y) |
4. 模型预测
1 2 | x_predicted = xgb_model.predict(test_x) print (x_predicted) |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· SQL Server 2025 AI相关能力初探
· 展开说说关于C#中ORM框架的用法!
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?