ubuntu20.04 opencv 4.2 + opencv_contrib 4.2.0 安装笔记 和 opencv 4.5.4 with cuda 安装笔记

 


参考:

https://docs.opencv.org/4.x/d7/d9f/tutorial_linux_install.html

Build with opencv_contrib

# 1. Install minimal prerequisites, libgtk2.0-dev pkg-config 用来显示图像
sudo apt update && sudo apt install -y cmake g++ wget unzip libgtk2.0-dev pkg-config
# 2. Download and unpack sources
# cd 到自己要放 opencv 的路径下,比如我们的是:/home/h/programs/cv
cd /home/h/programs/cv
sudo wget -O opencv.zip https://github.com/opencv/opencv/archive/4.2.0.zip --no-check-certificate
sudo wget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/4.2.0.zip --no-check-certificate
unzip opencv.zip && unzip opencv_contrib.zip
# 3. Create build directory and switch into it
mkdir build && cd build
# 4. Configure, build 目录内, 我们把 opencv 安装到 $HOME/.local 下
cmake -DCMAKE_INSTALL_PREFIX=$HOME/.local -DOPENCV_EXTRA_MODULES_PATH=../opencv_contrib-4.2.0/modules ../opencv-4.2.0
# 5. build 目录内,编译
make -j 16
# 6. 安装
make install
# 删除压缩包
cd .. && sudo rm opencv.zip opencv_contrib.zip

编译时候报错:opencv_contrib/modules/xfeatures2d/src/boostdesc.cpp:673:20: fatal error: boostdesc_bgm.i: No such file or directory
opencv_contrib-4.2.0/modules/xfeatures2d/src/boostdesc.cpp:654:20: fatal error: boostdesc_bgm.i: 没有那个文件或目录
解决:网络问题,添加代理,然后重复 4,5 步
参考:https://www.cnblogs.com/arxive/p/11778731.html

Using OpenCV with gcc and CMake

参考:https://docs.opencv.org/4.x/db/df5/tutorial_linux_gcc_cmake.html

// DisplayImage.cpp
#include <stdio.h>
#include <opencv2/opencv.hpp>
using namespace cv;
int main(int argc, char** argv )
{
if ( argc != 2 )
{
printf("usage: DisplayImage.out <Image_Path>\n");
return -1;
}
Mat image;
image = imread( argv[1], IMREAD_COLOR );
if ( !image.data )
{
printf("No image data \n");
return -1;
}
namedWindow("Display Image", WINDOW_AUTOSIZE );
imshow("Display Image", image);
waitKey(0);
return 0;
}

CMakeLists.txt:

cmake_minimum_required(VERSION 2.8)
set(OpenCV_DIR /home/h/.local/lib/cmake/opencv4)
project( DisplayImage )
find_package( OpenCV REQUIRED )
include_directories( ${OpenCV_INCLUDE_DIRS} )
add_executable( DisplayImage DisplayImage.cpp )
target_link_libraries( DisplayImage ${OpenCV_LIBS} )

Create build directory and switch into it

mkdir build && cd build

目录:

.
├── build
├── CMakeLists.txt
└── DisplayImage.cpp

cmake ..

报错: By not providing "FindOpenCV.cmake" in CMAKE_MODULE_PATH this project has
asked CMake to find a package configuration file provided by "OpenCV", but
CMake did not find one.
Could not find a package configuration file provided by "OpenCV" with any
of the following names:
OpenCVConfig.cmake
opencv-config.cmake
Add the installation prefix of "OpenCV" to CMAKE_PREFIX_PATH or set
"OpenCV_DIR" to a directory containing one of the above files. If "OpenCV"
provides a separate development package or SDK, be sure it has been
installed.

解决:

方式1:

# CMakeLists.txt:
set(OpenCV_DIR /home/h/.local/lib/cmake/opencv4)

方式2:

cmake -DOpenCV_DIR=/home/h/.local/lib/cmake/opencv4 ..

然后:

# 在build 文件夹下
make
./DisplayImage lena.jpg

报错:

Gtk-Message: 23:48:54.655: Failed to load module "canberra-gtk-module"

解决:

sudo apt-get install libcanberra-gtk-module

其他:

为python3构建opencv:https://stackoverflow.com/a/39409570

参考:https://cloud.tencent.com/developer/article/1657529


安装 opencv with cuda

参考:https://zhuanlan.zhihu.com/p/640084627
参考:https://zhuanlan.zhihu.com/p/497089746

0. 安装依赖项:

sudo apt-get update
sudo apt install cmake pkg-config unzip yasm git checkinstall libjpeg-dev libpng-dev libtiff-dev libavcodec-dev libavformat-dev libswscale-dev libavresample-dev libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev libxvidcore-dev x264 libx264-dev libfaac-dev libmp3lame-dev libtheora-dev libfaac-dev libmp3lame-dev libvorbis-dev libopencore-amrnb-dev libopencore-amrwb-dev
sudo apt-get install libgtk-3-dev libtbb-dev libatlas-base-dev gfortran

1. 卸载 opencv

找到之前装opencv的build文件夹,进入后执行卸载指令

sudo make uninstall

然后再把之前留在 usr 文件夹里的剩余文件都删掉。我之前直接按照官网说明安装的,所以东西都在 usr/local/ 下

//需要根据自己的情况修改
sudo rm -r /usr/local/include/opencv4 /usr/local/share/opencv4 /usr/local/lib/libopencv*

注意:我们这里是 /home/h/.local 替换掉 /usr/local/

2. 下载 opencv

https://github.com/opencv/opencv/archive/4.5.4.zip

https://github.com/opencv/opencv_contrib/archive/4.5.4.zip

解压、放到一个文件夹中。

3. 编译支持GPU加速的OpenCV

切记:注意:如果已经在 build 中编译,每次 cmake 前请把 rm CMakeCache.txt 删了再编译就可。

cd opencv-4.5.4
mkdir build && cd build
sudo cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-4.5.4/modules \
-D CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda \
-D CUDA_ARCH_BIN=8.6 \
-D WITH_CUDA=ON \
-D OPENCV_DNN_CUDA=ON \
-D WITH_CUDNN=ON \
-D ENABLE_FAST_MATH=ON \
-D CUDA_FAST_MATH=ON \
-D WITH_CUBLAS=ON \
-D OPENCV_GENERATE_PKGCONFIG=1 \
-D BUILD_EXAMPLES=ON \
-D BUILD_NEW_PYTHON_SUPPORT=ON \
-D BUILD_opencv_python3=ON \
-D HAVE_opencv_python3=ON \
-D OPENCV_ENABLE_NONFREE=ON \
-D INSTALL_PYTHON_EXAMPLES=ON \
-D OPENCV_PYTHON3_INSTALL_PATH=/usr/local/lib/python3.8/dist-packages \
-D PYTHON_EXECUTABLE=/usr/bin/python3.8 \
..

image

网络问题需要梯子
查询 DCUDA_ARCH_BIN=8.6 ,我的 3060是这个。https://developer.nvidia.com/cuda-gpus#compute

MX150 是 6.1 。 查询方法:https://blog.csdn.net/zong596568821xp/article/details/106411024

lscpu 查看有多少个内核可用,然后使用 。

架构: x86_64
CPU 运行模式: 32-bit, 64-bit
字节序: Little Endian
Address sizes: 48 bits physical, 48 bits virtual
CPU: 12

sudo make -j 12

image

参考: https://blog.csdn.net/woshicver/article/details/124763031#t4

请注意该教程,不要做软链接

4. 安装 OpenCV

sudo make install -j 12

image

使用 python3 解释器和 cv2.cuda.printCudaDeviceInfo(0) 来验证库是否正常工作:

image

5. 清理

安装后,有些文件我们将不再需要,可以安全删除:

cd ..
rm -rf opencv-4.5.4 opencv_contrib-4.5.4

使用的 CMake 标志参考

CMAKE_BUILD_TYPE =RELEASE:禁用调试选项

https://docs.opencv.org/4.x/db/d05/tutorial_config_reference.html#tutorial_config_reference_general_debug

CMAKE_INSTALL_PREFIX =/usr/local: 设置生成的二进制文件的根目录

https://docs.opencv.org/4.x/db/d05/tutorial_config_reference.html#tutorial_config_reference_install_root

WITH_CUDA =ON:启用 CUDA 支持

https://docs.opencv.org/4.x/db/d05/tutorial_config_reference.html#tutorial_config_reference_func_hetero

WITH_CUDNN=ON:(未记录)启用 cuDNN 支持

WITH_CUBLAS=ON:(未记录)启用 cuBLAS 支持

WITH_TBB =ON:使用线程构建块启用并行编程

https://docs.opencv.org/4.x/db/d05/tutorial_config_reference.html#tutorial_config_reference_func_core

OPENCV_DNN_CUDA =ON:启用 CUDA 后端并构建dnn模块(需要 CUDA、cuDNN 和 cuBLAS)

https://docs.opencv.org/4.x/db/d05/tutorial_config_reference.html#tutorial_config_reference_dnn

OPENCV_ENABLE_NONFREE =ON:启用受专利保护的算法

https://docs.opencv.org/4.x/db/d05/tutorial_config_reference.html#tutorial_config_reference_misc

CUDA_ARCH_BIN =8.7:指定NVIDIA GPU架构版本,根据自己的来

https://github.com/opencv/opencv/blob/4.x/cmake/OpenCVDetectCUDA.cmake#L217

OPENCV_EXTRA_MODULES_PATH =$HOME/opencv_contrib/modules:包含 OpenCV 的额外模块

https://docs.opencv.org/4.x/db/d05/tutorial_config_reference.html#tutorial_config_reference_general_contrib

BUILD_EXAMPLES =OFF:禁用构建示例

https://docs.opencv.org/4.x/db/d05/tutorial_config_reference.html#tutorial_config_reference_general_tests

HAVE_opencv_python3 =ON:强制依赖opencv_python3

https://docs.opencv.org/4.x/db/d05/tutorial_config_reference.html#tutorial_config_reference_func


agx orin 安装 opencv with cuda

1. 卸载 原来的 opencv

sudo apt purge libopencv*
sudo apt update

2. 编译支持 GPU 加速的OpenCV

清除 rm CMakeCache.txt

查看 agx orin 的 CUDA_ARCH_BIN 为 8.7。 jetson 除了上面网址可以去查,也可以使用 jtop 查询 CUDA_ARCH_BIN。

sudo cmake -D CMAKE_BUILD_TYPE=Release \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-4.5.4/modules \
-D CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda-11.4 \
-D CUDA_ARCH_BIN=8.7 \
-D CUDA_ARCH_PTX=8.7 \
-D WITH_CUDA=ON \
-D OPENCV_DNN_CUDA=ON \
-D WITH_CUDNN=ON \
-D ENABLE_FAST_MATH=ON \
-D CUDA_FAST_MATH=ON \
-D WITH_CUBLAS=ON \
-D OPENCV_GENERATE_PKGCONFIG=ON \
-D BUILD_EXAMPLES=ON \
-D BUILD_NEW_PYTHON_SUPPORT=ON \
-D BUILD_opencv_python3=ON \
-D HAVE_opencv_python3=ON \
-D OPENCV_ENABLE_NONFREE=ON \
-D INSTALL_PYTHON_EXAMPLES=ON \
-D OPENCV_PYTHON3_INSTALL_PATH=/usr/local/lib/python3.8/dist-packages \
-D PYTHON_EXECUTABLE=/usr/bin/python3.8 \
..

下载失败,请科学冲浪,参考:https://www.cnblogs.com/odesey/p/17960079

make -j 12

image

3. 安装 OpenCV, 别忘了

sudo make install -j 12

image

4. python 测试 和 jtop 确认:

除了上面的 python 来测试。jetson 也可以用 jtop 来查看。opencv with CUDA YES

image


C++ 测试:

main.cpp

#include <opencv2/opencv.hpp>
#include <vector>
#include <string>
#include <eigen3/Eigen/Core>
#include <unistd.h>
#include <opencv2/cudastereo.hpp>
#include <chrono>
#include <iostream>
using namespace std;
void calcu_disparity(cv::Mat& left, cv::Mat& right, cv::Mat& disparity)
{
auto t_a = chrono::high_resolution_clock::now();
cv::Ptr<cv::StereoSGBM> sgbm = cv::StereoSGBM::create(
0, 96, 9, 8 * 9 * 9, 32 * 9 * 9, 1, 63, 10, 100, 32);
cv::Mat disparity_sgbm;
sgbm->compute(left, right, disparity_sgbm);
disparity_sgbm.convertTo(disparity, CV_32F, 1.0 / 16.0f);
auto t_b = chrono::high_resolution_clock::now();
cout<<"no cuda:"<< chrono::duration_cast<chrono::microseconds>(t_b-t_a).count() / 1000<<"ms"<<endl;
}
void calcu_disparity_cuda(cv::Mat& left, cv::Mat& right, cv::Mat& disparity)
{
auto t_a = chrono::high_resolution_clock::now();
cv::Ptr<cv::cuda::StereoSGM> sgbm = cv::cuda::createStereoSGM(
0, 128, 8, 180, 3, cv::cuda::StereoSGM::MODE_HH);
cv::Mat disparity_sgbm(left.size(), CV_16S);
cv::cuda::GpuMat cudaDisparityMap(left.size(), CV_16S);
cv::cuda::GpuMat cudaDrawColorDisparity(left.size(), CV_8UC4);
cv::cuda::GpuMat cudaLeftFrame, cudaRightFrame;
cudaLeftFrame.upload(left);
cudaRightFrame.upload(right);
sgbm->compute(cudaLeftFrame, cudaRightFrame, cudaDisparityMap);
cudaDisparityMap.download(disparity_sgbm);
disparity_sgbm.convertTo(disparity, CV_32F, 1.0 / 16.0f);
auto t_b = chrono::high_resolution_clock::now();
cout<<"with cuda:"<< chrono::duration_cast<chrono::microseconds>(t_b-t_a).count() / 1000<<"ms"<<endl;
}
void get_data(int i, std::string& left_path, std::string& right_path)
{
std::string data_path = "/home/h/projects/C++/2011_09_26_drive_0048_sync/2011_09_26/2011_09_26_drive_0048_sync/";
std::string left_data_path = data_path+"image_00/data/";
std::string right_data_path = data_path+"image_01/data/";
char ss[22];
sprintf(ss,"%010d",i);
left_path = left_data_path + ss+".png";
right_path = right_data_path + ss+".png";
}
int main(int argc, char **argv)
{
int data_size = 22;
for(int i = 0;i<data_size;++i){
std::string left_image_path, right_image_path;
get_data(i, left_image_path, right_image_path);
cv::Mat left_image = cv::imread(left_image_path, 0);
cv::Mat right_image = cv::imread(right_image_path, 0);
// if (!left_image.data || !right_image.data) {
// // 图像加载失败,处理错误逻辑
// std::cerr << "Failed to load images." << std::endl;
// } else {
// // 图像加载成功,显示图像
// cv::imshow("Left Image", left_image);
// cv::imshow("Right Image", right_image);
// // cv::waitKey(0); // 等待按键
// }
cv::Mat disparity;
calcu_disparity(left_image, right_image, disparity);
cv::imshow("disparity Image", disparity);
cv::Mat disparity_cuda;
calcu_disparity_cuda(left_image, right_image, disparity_cuda);
cv::imshow("disparity_cuda Image", disparity_cuda);
const char c = cv::waitKey(1);
if (c == 27) // ESC
break;
}
return 0;
}

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
set(OpenCV_DIR /usr/local/lib/cmake/opencv4)
project( main )
find_package( OpenCV REQUIRED )
include_directories( ${OpenCV_INCLUDE_DIRS} )
add_executable( main main.cpp )
target_link_libraries( main ${OpenCV_LIBS} )

3060 能跑 5ms, 但是 agx orin 要跑 75ms 还需要优化!!! 上面代码写的有问题。优化版本:

#include <opencv2/opencv.hpp>
#include <opencv2/cudastereo.hpp>
#include <iostream>
#include <chrono>
class StereoProcessor {
private:
cv::Ptr<cv::cuda::StereoSGM> sgbm;
cv::cuda::GpuMat cudaLeftFrame, cudaRightFrame;
cv::cuda::GpuMat cudaDisparityMap, cudaDrawColorDisparity;
public:
StereoProcessor() : sgbm(cv::cuda::createStereoSGM(0, 128, 8, 180, 3, cv::cuda::StereoSGM::MODE_HH)) {}
void initialize(cv::Mat& left, cv::Mat& right) {
cudaLeftFrame.upload(left);
cudaRightFrame.upload(right);
cudaDisparityMap.create(left.size(), CV_16S);
cudaDrawColorDisparity.create(left.size(), CV_8UC4);
}
void computeDisparity() {
sgbm->compute(cudaLeftFrame, cudaRightFrame, cudaDisparityMap);
}
void downloadDisparity(cv::Mat& disparity) {
cv::Mat disparity_sgbm;
cudaDisparityMap.download(disparity_sgbm);
disparity_sgbm.convertTo(disparity, CV_32F, 1.0 / 16.0f);
}
};
void calcu_disparity_cuda(StereoProcessor& stereoProcessor, cv::Mat& disparity) {
auto t_a = std::chrono::high_resolution_clock::now();
stereoProcessor.computeDisparity();
stereoProcessor.downloadDisparity(disparity);
auto t_b = std::chrono::high_resolution_clock::now();
std::cout << "with cuda: " << std::chrono::duration_cast<std::chrono::microseconds>(t_b - t_a).count() / 1000 << "ms" << std::endl;
}
void get_data(int i, std::string& left_path, std::string& right_path) {
std::string data_path = "/home/h/projects/C++/2011_09_26_drive_0048_sync/2011_09_26/2011_09_26_drive_0048_sync/";
std::string left_data_path = data_path + "image_00/data/";
std::string right_data_path = data_path + "image_01/data/";
char ss[22];
sprintf(ss, "%010d", i);
left_path = left_data_path + ss + ".png";
right_path = right_data_path + ss + ".png";
}
int main(int argc, char** argv) {
int data_size = 22;
StereoProcessor stereoProcessor;
for (int i = 0; i < data_size; ++i) {
std::string left_image_path, right_image_path;
get_data(i, left_image_path, right_image_path);
cv::Mat left_image = cv::imread(left_image_path, 0);
cv::Mat right_image = cv::imread(right_image_path, 0);
stereoProcessor.initialize(left_image, right_image);
cv::Mat disparity_cuda;
calcu_disparity_cuda(stereoProcessor, disparity_cuda);
cv::imshow("disparity_cuda Image", disparity_cuda);
const char c = cv::waitKey(1);
if (c == 27) // ESC
break;
}
return 0;
}

opecv 4.9 cuda 安装踩坑

sudo cmake -D CMAKE_BUILD_TYPE=Release \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-4.9.0/modules \
-D CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda \
-D CUDA_ARCH_BIN=8.6 \
-D CUDA_ARCH_PTX=8.6 \
-D WITH_CUDA=ON \
-D OPENCV_DNN_CUDA=ON \
-D WITH_CUDNN=ON \
-D ENABLE_FAST_MATH=ON \
-D CUDA_FAST_MATH=ON \
-D WITH_CUBLAS=ON \
-D OPENCV_GENERATE_PKGCONFIG=ON \
-D BUILD_EXAMPLES=ON \
-D BUILD_NEW_PYTHON_SUPPORT=ON \
-D BUILD_opencv_python3=ON \
-D HAVE_opencv_python3=ON \
-D OPENCV_ENABLE_NONFREE=ON \
-D INSTALL_PYTHON_EXAMPLES=ON \
-D OPENCV_PYTHON3_INSTALL_PATH=/usr/local/lib/python3.8/dist-packages \
-D PYTHON_EXECUTABLE=/usr/bin/python3.8 \
..

报错:

Couldn't connect to server from the Internet.
Perhaps direct connections are not allowed in the current network.
To use proxy please check/specify these environment variables:

  • http_proxy/https_proxy
  • and/or HTTP_PROXY/HTTPS_PROXY

解决:

ping raw.githubusercontent.com
PING raw.githubusercontent.com (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.030 ms

修改 hosts

https://github.com/hawtim/hawtim.github.io/issues/10#issuecomment-1002444463

https://bbs.huaweicloud.com/blogs/325952

sudo vim /etc/hosts
# 添加:
185.199.108.133 raw.githubusercontent.com
185.199.109.133 raw.githubusercontent.com
185.199.110.133 raw.githubusercontent.com
185.199.111.133 raw.githubusercontent.com
ping raw.githubusercontent.com
PING raw.githubusercontent.com (185.199.108.133) 56(84) bytes of data.
64 bytes from raw.githubusercontent.com (185.199.108.133): icmp_seq=1 ttl=48 time=95.7 ms

然后再重新 cmake

sudo cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-4.9.0/modules \
-D CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda \
-D CUDA_ARCH_BIN=8.6 \
-D WITH_CUDA=ON \
-D OPENCV_DNN_CUDA=ON \
-D WITH_CUDNN=ON \
-D ENABLE_FAST_MATH=ON \
-D CUDA_FAST_MATH=ON \
-D WITH_CUBLAS=ON \
-D OPENCV_GENERATE_PKGCONFIG=1 \
-D BUILD_EXAMPLES=ON \
-D BUILD_NEW_PYTHON_SUPPORT=ON \
-D BUILD_opencv_python3=ON \
-D HAVE_opencv_python3=ON \
-D OPENCV_ENABLE_NONFREE=ON \
-D INSTALL_PYTHON_EXAMPLES=ON \
-D OPENCV_PYTHON3_INSTALL_PATH=/usr/local/lib/python3.8/dist-packages \
-D PYTHON_EXECUTABLE=/usr/bin/python3.8 \
..

编译:

sudo make -j 12

安装:

sudo make install -j 12
sudo cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-4.9.0/modules -D CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda -D CUDA_ARCH_BIN=8.6 -D WITH_CUDA=ON -D OPENCV_DNN_CUDA=ON -D WITH_CUDNN=ON -D ENABLE_FAST_MATH=ON -D CUDA_FAST_MATH=ON -D WITH_CUBLAS=ON -D OPENCV_GENERATE_PKGCONFIG=1 -D BUILD_EXAMPLES=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D BUILD_opencv_python2=OFF -D BUILD_opencv_python3=ON -D HAVE_opencv_python3=ON -D OPENCV_ENABLE_NONFREE=ON -D INSTALL_PYTHON_EXAMPLES=ON -D OPENCV_PYTHON3_INSTALL_PATH=/home/h/.local/lib/python3.8/site-packages -D PYTHON_EXECUTABLE=$(which python3) -D PYTHON3_INCLUDE_DIR=$(python3 -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())") -D PYTHON3_PACKAGES_PATH=$(python3 -c "from distutils.sysconfig import get_python_lib; print(get_python_lib())") -D PYTHON3_NUMPY_INCLUDE_DIRS=/home/h/.local/lib/python3.8/site-packages/numpy/core/include ..

安装遇到错误:

-- Python 3:
-- Interpreter: /usr/bin/python3 (ver 3.8.10)
-- Libraries: NO
-- numpy: NO (Python3 wrappers can not be generated)
-- install path: -

这会导致 opencv 的 python 版本无法安装。这个问题的主要原因是找不到 numpy

可以使用 pip install numpy 找到 numpy 的路径:

-D OPENCV_PYTHON3_INSTALL_PATH=/home/h/.local/lib/python3.8/site-packages
-D PYTHON3_NUMPY_INCLUDE_DIRS=/home/h/.local/lib/python3.8/site-packages/numpy/core/include

修改为:

sudo cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-4.9.0/modules -D CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda -D CUDA_ARCH_BIN=8.6 -D WITH_CUDA=ON -D OPENCV_DNN_CUDA=ON -D WITH_CUDNN=ON -D ENABLE_FAST_MATH=ON -D CUDA_FAST_MATH=ON -D WITH_CUBLAS=ON -D OPENCV_GENERATE_PKGCONFIG=1 -D BUILD_EXAMPLES=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D BUILD_opencv_python2=OFF -D BUILD_opencv_python3=ON -D HAVE_opencv_python3=ON -D OPENCV_ENABLE_NONFREE=ON -D INSTALL_PYTHON_EXAMPLES=ON -D OPENCV_PYTHON3_INSTALL_PATH=/home/h/.local/lib/python3.8/site-packages -D PYTHON_EXECUTABLE=$(which python3) -D PYTHON3_INCLUDE_DIR=$(python3 -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())") -D PYTHON3_PACKAGES_PATH=$(python3 -c "from distutils.sysconfig import get_python_lib; print(get_python_lib())") -D PYTHON3_NUMPY_INCLUDE_DIRS=/home/h/.local/lib/python3.8/site-packages/numpy/core/include ..
sudo ldconfig

sudo ldconfig命令用于更新动态链接器的运行时链接库缓存。在Linux系统中,动态链接器用于在程序运行时查找和加载共享库(也称为动态链接库或共享对象文件)。ldconfig命令的作用是更新系统范围内的共享库缓存,以便动态链接器能够找到新安装的共享库。

当你在系统上安装了新的共享库,或者更新了共享库的路径时,你通常需要运行ldconfig命令来刷新共享库缓存,以确保动态链接器能够找到这些新的或更新的共享库。

在安装OpenCV等库后,通常会建议运行 sudo ldconfig 来确保系统中的动态链接器能够正确加载新安装的库。

删除安装包即可。

posted @   Zenith_Hugh  阅读(1807)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律
点击右上角即可分享
微信分享提示

喜欢请打赏

扫描二维码打赏

微信打赏