消息队列
什么是消息队列
通常说的消息队列,简称MQ(Message Queue),指的就是消息中间件。简单理解为一个使用队列来通信的组件,本质上就是个转发器,包含发消息,存消息,消费消息的过程。
为什么要使用消息队列
1、解耦
订单系统下单后,消息写入消息队列,库存系统订阅下单系统,获取下单信息,进行库存操作
2、异步
注册信息保存后,同时异步发短信和邮件
3、削峰
流量暴涨,用户请求写入消息队列,系统读取消息队列慢慢处理
4、消息通讯
消息队列内置了高效的通信机制,可用于消息通讯。如实现点对点消息队列、聊天室等。
5、远程调用
基于MQ,自研了远程调用框架
消息队列模型:生产者-消费者模式 发布订阅模式
队列模型
生产者往某个队列里面发送消息,一个队列可以存储多个生产者的消息,一个队列也可以有多个消费者, 但是消费者之间是竞争关系,即每条消息只能被一个消费者消费。
发布/订阅模型
为了解决一条消息能被多个消费者消费的问题,发布/订阅模型就来了。该模型是将消息发往一个Topic
(主题)中,所有订阅了这个 Topic
的订阅者都能消费这条消息。
消息丢失问题的解决
问题点
如何知道有消息丢失
哪些环节可能丢失消息
如何确保消息不丢失
一条消息从生产到消费的过程,可以划分为三个阶段,消息生产阶段,消息存储阶段,消息消费阶段。
消息生产阶段: 从消息被生产出来,然后提交给 MQ 的过程中,只要能正常收到 MQ 存储的 ack 确认响应,就表示发送成功,所以只要处理好返回值和异常,这个阶段是不会出现消息丢失的。
消息存储阶段: 这个阶段一般会直接交给 MQ 消息中间件来保证,但是你要了解它的原理,比如 Broker(消息队列服务端) 会做副本,保证一条消息至少同步两个节点再返回 ack
消息消费阶段: 消费端从 Broker 上拉取消息,只要消费端在收到消息后,不立即发送消费确认给 Broker,而是等到执行完业务逻辑后,再发送消费确认,也能保证消息的不丢失。
总体方案解决思路为:在消息生产端,给每个发出的消息都指定一个全局唯一 ID,或者附加一个连续递增的版本号,然后在消费端做对应的版本校验。
具体实现:
利用拦截器机制。 在生产端发送消息之前,通过拦截器将消息版本号注入消息中(版本号可以采用连续递增的 ID 生成,也可以通过分布式全局唯一 ID生成)。然后在消费端收到消息后,再通过拦截器检测版本号的连续性或消费状态,这样实现的好处是消息检测的代码不会侵入到业务代码中,可以通过单独的任务来定位丢失的消息,做进一步的排查。
解决消息被重复消费的问题:最简单的实现方案,就是在数据库中建一张消息日志表, 这个表有两个字段:消息 ID 和消息执行状态。这样,我们消费消息的逻辑可以变为:在消息日志表中增加一条消息记录,然后再根据消息记录,异步操作。
消息积压:消息积压问题发生在消费阶段
如果是线上突发问题,要临时扩容,增加消费端的数量,与此同时,降级一些非核心的业务。通过扩容和降级承担流量,这是为了表明你对应急问题的处理能力。
其次,才是排查解决异常问题,如通过监控,日志等手段分析是否消费端的业务逻辑代码出现了问题,优化消费端的业务处理逻辑。
最后,如果是消费端的处理能力不足,可以通过水平扩容来提供消费端的并发处理能力,但这里有一个考点需要特别注意, 那就是在扩容消费者的实例数的同时,必须同步扩容主题 Topic 的分区数量,确保消费者的实例数和分区数相等。如果消费者的实例数超过了分区数,由于分区是单线程消费,所以这样的扩容就没有效果。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY