Alex / OverFeat / VGG 中的卷积参数
研究需要,统计了一些经典CNN结构的卷积层参数。
Alexnet
Layer Input Kernel Output Stride Pad 1 256 * 3 * 227 * 227 48 * 3 * 11 * 11 256 * 48 * 55 * 55 4 0 2 256 * 48 * 27 * 27 128 * 48 * 5 * 5 256 * 128 * 27 * 27 1 2 3 256 * 128 * 13 * 13 192 * 128 * 3 * 3 256 * 192 * 13 * 13 1 1 4 256 * 192 * 13 * 13 192 * 192 * 3 * 3 256 * 192 * 13 * 13 1 1 5 256 * 192 * 13 * 13 192 * 192 * 3 * 3 256 * 192 * 13 * 13 1 1
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet classification with deep convolutional neural networks.” Advances in neural information processing systems. 2012.
Over Feat
Layer Input Kernel Output Stride Pad 1 128 * 3 * 221 * 221 96 * 3 * 11 * 11 128 * 96 * 106 * 106 2 0 2 128 * 96 * 58 * 58 256 * 96 * 5 * 5 128 * 96 * 54 * 54 1 0 3 128 * 96 * 27 *27 512 * 96 * 3 * 3 128 * 512 * 27 * 27 1 1 4 128 * 512 * 27 * 27 1024 * 512 * 3 * 3 128 * 1024 * 27 * 27 1 1 5 128 * 1024 * 27 * 27 1024 * 1024 * 3 * 3 128 * 1024 * 27 * 27 1 1
Sermanet, Pierre, et al. “Overfeat: Integrated recognition, localization and detection using convolutional networks.” arXiv preprint arXiv:1312.6229 (2013).
VGG
Layer Input Kernel Output Stride Pad 1 256 * 3 * 224 * 224 64 * 3 * 3 * 3 256 * 64 * 222 * 222 1 0 2 256 * 64 * 222 * 222 64 * 64 * 3 * 3 256 * 64 * 220 * 220 1 0 3 256 * 64 * 110 * 110 128 * 64 * 3 * 3 256 * 128 * 108 * 108 1 0 4 256 * 128 * 108 * 108 128 * 128 * 3 * 3 256 * 128 * 106 * 106 1 0 5 256 * 128 * 58 * 58 256 * 128 * 3 * 3 256 * 256 * 56 * 56 1 0 6 256 * 256 * 56 * 56 256 * 256 * 3 * 3 256 * 256 * 54 * 54 1 0 7 256 * 256 * 54 * 54 256 * 256 * 3 * 3 256 * 256 * 52 * 52 1 0 8 256 * 256 * 52 * 52 256 * 256 * 3 * 3 256 * 256 * 52 * 52 1 1 9 256 * 256 * 26 * 26 512 * 256 * 3 * 3 256 * 512 * 24 * 24 1 0 10 256 * 512 * 24 * 24 512 * 512 * 3 * 3 256 * 512 * 22 * 22 1 0 11 256 * 512 * 22 * 22 512 * 512 * 3 * 3 256 * 512 * 20 * 20 1 0 12 256 * 512 * 20 * 20 512 * 512 * 3 * 3 256 * 512 * 18 * 18 1 0
Simonyan, Karen, and Andrew Zisserman. “Very deep convolutional networks for large-scale image recognition.” arXiv preprint arXiv:1409.1556 (2014).
Output_size 与 Input_size/ Kernel_size / Padding / Stride 关系
Out_size=(In_size−Kernel_size+2×Pad_size)/Stride+1