检查LigthGBM&XGBoost&Catboost是否支持GPU
测试脚本:
import lightgbm as lgb from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import time def run_lightgbm(): X, y = load_iris(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) clf = lgb.LGBMClassifier(learning_rate=0.1, n_estimators=10000, device='gpu', gpu_platform_id=0, gpu_device_id=0, verbose=3) clf.fit(X_train, y_train, eval_set=[(X_test, y_test)]) def run_xgboost(): import xgboost as xgb X, y = load_iris(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) clf = xgb.XGBClassifier( n_estimators=300, max_depth=9, learning_rate=0.05, subsample=0.9, colsample_bytree=0.9, missing=-999, random_state=2019, gpu_id=0, tree_method='gpu_hist' ) clf.fit(X_train, y_train, eval_metric=['error']) def run_catboost(): import catboost X, y = load_iris(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) clf = catboost.CatBoostClassifier(verbose=100, iterations=300, learning_rate=0.001, task_type='GPU') clf.fit(X_train, y_train, eval_set=[(X_test, y_test)]) if __name__ == "__main__": t_start = time.time() run_catboost() print(time.time() - t_start)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix