凸包2——Graham算法
1.点集排序
为了得到加入新点的顺序 Graham扫描法的第一步是对点集排序
排序是对杂乱的点集进行了梳理 这也是这种算法能够得到更高效率的根本原因
排序的方法也有两种 极角坐标排序(极角序) 和 直角坐标排序(水平序)
前者好理解一些 但是在实现的时候 后者更方便
先说极角序 为了极角排序 我们先得得到一个参考点
一般的 我们取最左边(横坐标最小)的点作为参考点 如果有多个这样的点就取最下面的(纵坐标最小)
看这样一个例子 这是一个任意给出的平面点集:
参考点的定义:在横坐标最小的情况下取纵坐标最小的点
所以所有的点只能在这个黄色的半平面中 而且正上方为闭(可取得) 正下方为开(不可取)
这就决定了参考点的性质:点集中任意两点和参考点所成的到角为锐角
这样我们取得参考点 然后再考虑极角排序
极角排序以参考点为极角坐标系原点 各个点的极角为关键字
由于上面我们得到的参考点的性质 我们可以设所有点的极角均在(-90,90]之间
排序完成后应该是这样的:
比较极角我们仍然可以利用向量的叉积
同样由于参考点的性质 所有向量之间的到角都是在180度以内 不会产生错误
posted on 2011-11-15 20:40 More study needed. 阅读(483) 评论(0) 编辑 收藏 举报