S3pool pytorch
随机池化
import torch
import torch.nn as nn
from torch.autograd import Variable
class StochasticPool2DLayer(nn.Module):
def __init__(self, pool_size=2, maxpool=True, training=False, grid_size=None, **kwargs):
super(StochasticPool2DLayer, self).__init__(**kwargs)
self.rng = torch.cuda.manual_seed_all(123) # this changed in Pytorch for working
self.pool_size = pool_size
self.maxpool_flag = maxpool
self.training = training
if grid_size:
self.grid_size = grid_size
else:
self.grid_size = pool_size
self.Maxpool = torch.nn.MaxPool2d(kernel_size=self.pool_size, stride=1)
self.Avgpool = torch.nn.AvgPool2d(kernel_size=self.pool_size,
stride=self.pool_size,
padding=self.pool_size//2,)
self.padding = nn.ConstantPad2d((0,1,0,1),0)
def forward(self, x, **kwargs):
if self.maxpool_flag:
x = self.Maxpool(x)
x = self.padding(x)
if not self.training:
# print(x.size())
x = self.Avgpool(x)
return x
# return x[:, :, ::self.pool_size, ::self.pool_size]
else:
w, h = x.data.shape[2:]
n_w, n_h = w//self.grid_size, h//self.grid_size
n_sample_per_grid = self.grid_size//self.pool_size
# print('===========================')
idx_w = []
idx_h = []
if w>2 and h>2:
for i in range(n_w):
offset = self.grid_size * i
if i < n_w - 1:
this_n = self.grid_size
else:
this_n = x.data.shape[2] - offset
this_idx, _ = torch.sort(torch.randperm(this_n)[:n_sample_per_grid])
idx_w.append(offset + this_idx)
for i in range(n_h):
offset = self.grid_size * i
if i < n_h - 1:
this_n = self.grid_size
else:
this_n = x.data.shape[3] - offset
this_idx, _ = torch.sort(torch.randperm(this_n)[:n_sample_per_grid])
idx_h.append(offset + this_idx)
idx_w = torch.cat(idx_w, dim=0)
idx_h = torch.cat(idx_h, dim=0)
else:
idx_w = torch.LongTensor([0])
idx_h = torch.LongTensor([0])
output = x[:, :, idx_w.cuda()][:, :, :, idx_h.cuda()]
return output
if __name__=='__main__':
a = torch.randn(1, 3, 4, 4)
print(a)
layer = StochasticPool2DLayer(pool_size=2, maxpool=True, training=True)
b = layer.forward(a)
print(b)
随机池化
不太看好这种池化方式,比一般的池化更加难以解释,这样在训练好的model会有一个随机的表现怎么办?