nyoj 311 dp 完全背包

完全背包

时间限制:3000 ms  |  内存限制:65535 KB
难度:4
描述

直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的体积是c,价值是w。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。本题要求是背包恰好装满背包时,求出最大价值总和是多少。如果不能恰好装满背包,输出NO

输入
第一行: N 表示有多少组测试数据(N<7)。 
接下来每组测试数据的第一行有两个整数M,V。 M表示物品种类的数目,V表示背包的总容量。(0<M<=2000,0<V<=50000)
接下来的M行每行有两个整数c,w分别表示每种物品的重量和价值(0<c<100000,0<w<100000)
输出
对应每组测试数据输出结果(如果能恰好装满背包,输出装满背包时背包内物品的最大价值总和。 如果不能恰好装满背包,输出NO)
样例输入
2
1 5
2 2
2 5
2 2
5 1
样例输出
NO
1
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;

int n,m,t;
int dp[100001],c,w;

int main()
{
    scanf("%d",&t);
    while(t--)
    {
        int i,j;
        memset(dp,-100,sizeof(dp));
        scanf("%d %d",&n,&m);
        dp[0]=0;
        for(i=0; i<n; i++)
        {
            scanf("%d %d",&c,&w);
            for(j=c; j<=m; j++)
            {
//                if(dp[j]<dp[j-c]+w)
//                    dp[j]=dp[j-c]+w;
                dp[j]=max(dp[j],dp[j-c]+w);
            }
        }
        if(dp[m]<0)
            printf("NO\n");
        else printf("%d\n",dp[m]);
    }
    return 0;
}

posted @ 2016-11-27 14:52  xushukui  阅读(176)  评论(0编辑  收藏  举报