nyoj 234 吃土豆
吃土豆
时间限制:1000 ms | 内存限制:65535 KB
难度:4
- 描述
- Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled with different qualities beans. Meantime, there is only one bean in any 1*1 grid. Now you want to
eat the beans and collect the qualities, but everyone must obey by the following rules: if you eat the bean at the coordinate(x, y), you can’t eat the beans anyway at the coordinates listed (if exiting): (x, y-1), (x, y+1), and the both rows whose abscissas
are x-1 and x+1.
Now, how much qualities can you eat and then get ?- 输入
- There are a few cases. In each case, there are two integer M (row number) and N (column number). The next M lines each contain N integers, representing the qualities of the beans. We can make sure that the quality of bean
isn't beyond 1000, and 1<=M,N<=500.
- 输出
- For each case, you just output the MAX qualities you can eat and then get.
- 样例输入
-
4 6 11 0 7 5 13 9 78 4 81 6 22 4 1 40 9 34 16 10 11 22 0 33 39 6
- 样例输出
-
242
//#include<stdio.h> //int max(int m,int *a) //{ // int i,f[550]; // for(i=1; i<=m; i++) // { // if(i==1) f[i]=a[i]; // else if(i==2) f[i]=a[i]>a[i-1]?a[i]:a[i-1]; // else // { // f[i]=(f[i-2]+a[i])>f[i-1]?f[i-2]+a[i]:f[i-1]; // } // } // return f[m]; //} ////非递归推算法 ///*int max(int m,int *a){ // if(m==1)return a[1]; // if(m==2)return a[2]=a[1]>a[2]?a[1]:a[2]; // return max(m-2,a)+a[m]>max(m-1,a)?max(m-2,a)+a[m]:max(m-1,a); //}*/ // ////递归分制算法 //int main() //{ // int a[510],b[510],i,j,m,n; // while(scanf("%d %d",&n,&m)==2) // { // for(i=1; i<=n; i++) // { // for(j=1; j<=m; j++) // { // scanf("%d",&a[j]); // } // b[i]=max(m,a); // } // printf("%d\n",max(n,b)); // } // return 0; //} #include<cmath> #include<cstdio> #include<string> #include<cstring> #include<iostream> #include<algorithm> using namespace std; int map,dp[510],R[510][510]; int main() { int m,n,i,j; while(~scanf("%d %d",&m,&n)) { memset(R,0,sizeof(R)); memset(dp,0,sizeof(dp)); for(i=3; i<m+3; ++i) //把n,m都扩大2,方便dp { for(j=3; j<n+3; ++j) { scanf("%d",&map); R[i][j]=max(R[i][j-2],R[i][j-3])+map; //累积i行到j列的最大和 } } for(i=3; i<m+3; ++i) { dp[i]=max(dp[i-2],dp[i-3])+max(R[i][n+1],R[i][n+2]); //累积到i行的最大和 } printf("%d\n",max(dp[m+1],dp[m+2])); } return 0; }