keras之save & reload model
分类:
Keras
import numpy as np np.random.seed(1337) # for reproducibility from keras.models import Sequential from keras.layers import Dense from keras.models import load_model # create some data X = np.linspace(-1, 1, 200) np.random.shuffle(X) # randomize the data Y = 0.5 * X + 2 + np.random.normal(0, 0.05, (200, )) X_train, Y_train = X[:160], Y[:160] # first 160 data points X_test, Y_test = X[160:], Y[160:] # last 40 data points model = Sequential() model.add(Dense(output_dim=1, input_dim=1)) model.compile(loss='mse', optimizer='sgd') for step in range(301): cost = model.train_on_batch(X_train, Y_train) # save print('test before save: ', model.predict(X_test[0:2])) model.save('my_model.h5') # HDF5 file, you have to pip3 install h5py if don't have it del model # deletes the existing model # load model = load_model('my_model.h5') print('test after load: ', model.predict(X_test[0:2])) """ # save and load weights model.save_weights('my_model_weights.h5') model.load_weights('my_model_weights.h5') # save and load fresh network without trained weights from keras.models import model_from_json json_string = model.to_json() model = model_from_json(json_string) """
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 使用C#创建一个MCP客户端
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 按钮权限的设计及实现