Pandas之Series+DataFrame

Series是带有标签的一维数组,可以保存任何数据类型(整数,字符串,浮点数,python对象)

index查看series索引,values查看series值

series相比于ndarray,是一个自带索引index的数组--> 一维数组 + 对应索引

series和dict相比,series更像是一个有顺序的字典

创建方法

1.由字典创建,字典的key就是index,values就是values

dic = {'a':1 ,'b':2 , 'c':3, '4':4, '5':5}
s = pd.Series(dic)
print(s)
4    4
5    5
a    1
b    2
c    3
dtype: int64

2.由数组创建(一维数组)

arr = np.random.randn(5)
s = pd.Series(arr)
print(arr)
print(s)
# 默认index是从0开始,步长为1的数字

s = pd.Series(arr, index = ['a','b','c','d','e'],dtype = np.object)
print(s)
# index参数:设置index,长度保持一致
# dtype参数:设置数值类型
[ 0.11206121  0.1324684   0.59930544  0.34707543 -0.15652941]
0    0.112061
1    0.132468
2    0.599305
3    0.347075
4   -0.156529
dtype: float64
a    0.112061
b    0.132468
c    0.599305
d    0.347075
e   -0.156529
dtype: object

3. 由标量创建

s = pd.Series(10, index = range(4))
print(s)
# 如果data是标量值,则必须提供索引。该值会重复,来匹配索引的长度
0    10
1    10
2    10
3    10
dtype: int64

Pandas

1.由数组/list组成的字典

# 创建方法:pandas.Dataframe()

data1 = {'a':[1,2,3],
        'b':[3,4,5],
        'c':[5,6,7]}
data2 = {'one':np.random.rand(3),
        'two':np.random.rand(3)}   # 这里如果尝试  'two':np.random.rand(4) 会怎么样?
print(data1)
print(data2)
df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
print(df1)
print(df2)
# 由数组/list组成的字典 创建Dataframe,columns为字典key,index为默认数字标签
# 字典的值的长度必须保持一致!

df1 = pd.DataFrame(data1, columns = ['b','c','a','d'])
print(df1)
df1 = pd.DataFrame(data1, columns = ['b','c'])
print(df1)
# columns参数:可以重新指定列的顺序,格式为list,如果现有数据中没有该列(比如'd'),则产生NaN值
# 如果columns重新指定时候,列的数量可以少于原数据

df2 = pd.DataFrame(data2, index = ['f1','f2','f3'])  # 这里如果尝试  index = ['f1','f2','f3','f4'] 会怎么样?
print(df2)
# index参数:重新定义index,格式为list,长度必须保持一致
{'a': [1, 2, 3], 'c': [5, 6, 7], 'b': [3, 4, 5]}
{'one': array([ 0.00101091,  0.08807153,  0.58345056]), 'two': array([ 0.49774634,  0.16782565,  0.76443489])}
   a  b  c
0  1  3  5
1  2  4  6
2  3  5  7
        one       two
0  0.001011  0.497746
1  0.088072  0.167826
2  0.583451  0.764435
   b  c  a    d
0  3  5  1  NaN
1  4  6  2  NaN
2  5  7  3  NaN
   b  c
0  3  5
1  4  6
2  5  7
         one       two
f1  0.001011  0.497746
f2  0.088072  0.167826
f3  0.583451  0.764435

2.由Series组成的字典

data1 = {'one':pd.Series(np.random.rand(2)),
        'two':pd.Series(np.random.rand(3))}  # 没有设置index的Series
data2 = {'one':pd.Series(np.random.rand(2), index = ['a','b']),
        'two':pd.Series(np.random.rand(3),index = ['a','b','c'])}  # 设置了index的Series
print(data1)
print(data2)
df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
print(df1)
print(df2)
# 由Seris组成的字典 创建Dataframe,columns为字典key,index为Series的标签(如果Series没有指定标签,则是默认数字标签)
# Series可以长度不一样,生成的Dataframe会出现NaN值
{'one': 0    0.892580
1    0.834076
dtype: float64, 'two': 0    0.301309
1    0.977709
2    0.489000
dtype: float64}
{'one': a    0.470947
b    0.584577
dtype: float64, 'two': a    0.122659
b    0.136429
c    0.396825
dtype: float64}
        one       two
0  0.892580  0.301309
1  0.834076  0.977709
2       NaN  0.489000
        one       two
a  0.470947  0.122659
b  0.584577  0.136429
c       NaN  0.396825

3.通过二维数组直接创建

import numpy as np
import pandas as pd
ar = np.random.rand(9).reshape(3,3)
print(ar)
df1 = pd.DataFrame(ar)
df2 = pd.DataFrame(ar, index = ['a', 'b', 'c'], columns = ['one','two','three'])  # 可以尝试一下index或columns长度不等于已有数组的情况
print(df1)
print(df2)
# 通过二维数组直接创建Dataframe,得到一样形状的结果数据,如果不指定index和columns,两者均返回默认数字格式
# index和colunms指定长度与原数组保持一致
[[0.10240097 0.64014438 0.35406434]
 [0.17617253 0.48451747 0.76316397]
 [0.47298642 0.51552541 0.8175865 ]]
          0         1         2
0  0.102401  0.640144  0.354064
1  0.176173  0.484517  0.763164
2  0.472986  0.515525  0.817586
        one       two     three
a  0.102401  0.640144  0.354064
b  0.176173  0.484517  0.763164
c  0.472986  0.515525  0.817586

4.由字典组成的列表

data = [{'one': 1, 'two': 2}, {'one': 5, 'two': 10, 'three': 20}]
print(data)
df1 = pd.DataFrame(data)
df2 = pd.DataFrame(data, index = ['a','b'])
df3 = pd.DataFrame(data, columns = ['one','two'])
print(df1)
print(df2)
print(df3)
# 由字典组成的列表创建Dataframe,columns为字典的key,index不做指定则为默认数组标签
# colunms和index参数分别重新指定相应列及行标签
[{'one': 1, 'two': 2}, {'one': 5, 'three': 20, 'two': 10}]
   one  three  two
0    1    NaN    2
1    5   20.0   10
   one  three  two
a    1    NaN    2
b    5   20.0   10
   one  two
0    1    2
1    5   10

5.由字典组成的字典

data = {'Jack':{'math':90,'english':89,'art':78},
       'Marry':{'math':82,'english':95,'art':92},
       'Tom':{'math':78,'english':67}}
df1 = pd.DataFrame(data)
print(df1)
# 由字典组成的字典创建Dataframe,columns为字典的key,index为子字典的key

df2 = pd.DataFrame(data, columns = ['Jack','Tom','Bob'])
df3 = pd.DataFrame(data, index = ['a','b','c'])
print(df2)
print(df3)
# columns参数可以增加和减少现有列,如出现新的列,值为NaN
# index在这里和之前不同,并不能改变原有index,如果指向新的标签,值为NaN (非常重要!)
      Jack  Marry   Tom
art        78     92   NaN
english    89     95  67.0
math       90     82  78.0
         Jack   Tom  Bob
art        78   NaN  NaN
english    89  67.0  NaN
math       90  78.0  NaN
   Jack  Marry  Tom
a   NaN    NaN  NaN
b   NaN    NaN  NaN
c   NaN    NaN  NaN

核心笔记:df.loc[label]主要针对index选择行,同时支持指定index,及默认数字index

dataframe选择行

data3 = df.loc['one']
data4 = df.loc[['one','two']]
print(data2,type(data3))
print(data3,type(data4))
# 按照index选择行,只选择一行输出Series,选择多行输出Dataframe
               a          c
one    72.615321  57.485645
two    46.295674  92.267989
three  14.699591  39.683577 <class 'pandas.core.series.Series'>
a    72.615321
b    49.816987
c    57.485645
d    84.226944
Name: one, dtype: float64 <class 'pandas.core.frame.DataFrame'>

df.loc[:,'baz'] 

# df.iloc[] - 按照整数位置(从轴的0到length-1)选择行
# 类似list的索引,其顺序就是dataframe的整数位置,从0开始计
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   index = ['one','two','three','four'],
                   columns = ['a','b','c','d'])
print(df)
print('------')

print(df.iloc[0])
print(df.iloc[-1])
#print(df.iloc[4])
print('单位置索引\n-----')
# 单位置索引
# 和loc索引不同,不能索引超出数据行数的整数位置

print(df.iloc[[0,2]])
print(df.iloc[[3,2,1]])
print('多位置索引\n-----')
# 多位置索引
# 顺序可变

print(df.iloc[1:3])
print(df.iloc[::2])
print('切片索引')
# 切片索引
# 末端不包含
  a          b          c          d
one    21.848926   2.482328  17.338355  73.014166
two    99.092794   0.601173  18.598736  61.166478
three  87.183015  85.973426  48.839267  99.930097
four   75.007726  84.208576  69.445779  75.546038
------
a    21.848926
b     2.482328
c    17.338355
d    73.014166
Name: one, dtype: float64
a    75.007726
b    84.208576
c    69.445779
d    75.546038
Name: four, dtype: float64
单位置索引
-----
               a          b          c          d
one    21.848926   2.482328  17.338355  73.014166
three  87.183015  85.973426  48.839267  99.930097
               a          b          c          d
four   75.007726  84.208576  69.445779  75.546038
three  87.183015  85.973426  48.839267  99.930097
two    99.092794   0.601173  18.598736  61.166478
多位置索引
-----
               a          b          c          d
two    99.092794   0.601173  18.598736  61.166478
three  87.183015  85.973426  48.839267  99.930097
               a          b          c          d
one    21.848926   2.482328  17.338355  73.014166
three  87.183015  85.973426  48.839267  99.930097
切片索引

dataframe选择列

df = pd.DataFrame(np.random.rand(12).reshape(3,4)*100,
                   index = ['one','two','three'],
                   columns = ['a','b','c','d'])
print(df)

data1 = df['a']
data2 = df[['a','c']]
print(data1,type(data1))
print(data2,type(data2))
print('-----')
# 按照列名选择列,只选择一列输出Series,选择多列输出Dataframe
              a          b          c          d
one    72.615321  49.816987  57.485645  84.226944
two    46.295674  34.480439  92.267989  17.111412
three  14.699591  92.754997  39.683577  93.255880
one      72.615321
two      46.295674
three    14.699591
Name: a, dtype: float64 <class 'pandas.core.series.Series'>
               a          c
one    72.615321  57.485645
two    46.295674  92.267989
three  14.699591  39.683577 <class 'pandas.core.frame.DataFrame'>
# 布尔型索引
# 和Series原理相同

df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   index = ['one','two','three','four'],
                   columns = ['a','b','c','d'])
print(df)
print('------')

b1 = df < 20
print(b1,type(b1))
print(df[b1])  # 也可以书写为 df[df < 20]
print('------')
# 不做索引则会对数据每个值进行判断
# 索引结果保留 所有数据:True返回原数据,False返回值为NaN

b2 = df['a'] > 50
print(b2,type(b2))
print(df[b2])  # 也可以书写为 df[df['a'] > 50]
print('------')
# 单列做判断
# 索引结果保留 单列判断为True的行数据,包括其他列

b3 = df[['a','b']] > 50
print(b3,type(b3))
print(df[b3])  # 也可以书写为 df[df[['a','b']] > 50]
print('------')
# 多列做判断
# 索引结果保留 所有数据:True返回原数据,False返回值为NaN

b4 = df.loc[['one','three']] < 50
print(b4,type(b4))
print(df[b4])  # 也可以书写为 df[df.loc[['one','three']] < 50]
print('------')
# 多行做判断
# 索引结果保留 所有数据:True返回原数据,False返回值为NaN
  a          b          c          d
one    19.185849  20.303217  21.800384  45.189534
two    50.105112  28.478878  93.669529  90.029489
three  35.496053  19.248457  74.811841  20.711431
four   24.604478  57.731456  49.682717  82.132866
------
           a      b      c      d
one     True  False  False  False
two    False  False  False  False
three  False   True  False  False
four   False  False  False  False <class 'pandas.core.frame.DataFrame'>
               a          b   c   d
one    19.185849        NaN NaN NaN
two          NaN        NaN NaN NaN
three        NaN  19.248457 NaN NaN
four         NaN        NaN NaN NaN
------
one      False
two       True
three    False
four     False
Name: a, dtype: bool <class 'pandas.core.series.Series'>
             a          b          c          d
two  50.105112  28.478878  93.669529  90.029489
------
           a      b
one    False  False
two     True  False
three  False  False
four   False   True <class 'pandas.core.frame.DataFrame'>
               a          b   c   d
one          NaN        NaN NaN NaN
two    50.105112        NaN NaN NaN
three        NaN        NaN NaN NaN
four         NaN  57.731456 NaN NaN
------
          a     b      c     d
one    True  True   True  True
three  True  True  False  True <class 'pandas.core.frame.DataFrame'>
               a          b          c          d
one    19.185849  20.303217  21.800384  45.189534
two          NaN        NaN        NaN        NaN
three  35.496053  19.248457        NaN  20.711431
four         NaN        NaN        NaN        NaN
------
# 多重索引:比如同时索引行和列
# 先选择列再选择行 —— 相当于对于一个数据,先筛选字段,再选择数据量

df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   index = ['one','two','three','four'],
                   columns = ['a','b','c','d'])
print(df)
print('------')

print(df['a'].loc[['one','three']])   # 选择a列的one,three行
print(df[['b','c','d']].iloc[::2])   # 选择b,c,d列的one,three行
print(df[df['a'] < 50].iloc[:2])   # 选择满足判断索引的前两行数据
              a          b          c          d
one    50.660904  89.827374  51.096827   3.844736
two    70.699721  78.750014  52.988276  48.833037
three  33.653032  27.225202  24.864712  29.662736
four   21.792339  26.450939   6.122134  52.323963
------
one      50.660904
three    33.653032
Name: a, dtype: float64
               b          c          d
one    89.827374  51.096827   3.844736
three  27.225202  24.864712  29.662736
               a          b          c          d
three  33.653032  27.225202  24.864712  29.662736
four   21.792339  26.450939   6.122134  52.323963

添加与修改

df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   columns = ['a','b','c','d'])
print(df)

df['e'] = 10
df.loc[4] = 20
print(df)
# 新增列/行并赋值

df['e'] = 20
df[['a','c']] = 100
print(df)
# 索引后直接修改值
         a          b          c          d
0  17.148791  73.833921  39.069417   5.675815
1  91.572695  66.851601  60.320698  92.071097
2  79.377105  24.314520  44.406357  57.313429
3  84.599206  61.310945   3.916679  30.076458
           a          b          c          d   e
0  17.148791  73.833921  39.069417   5.675815  10
1  91.572695  66.851601  60.320698  92.071097  10
2  79.377105  24.314520  44.406357  57.313429  10
3  84.599206  61.310945   3.916679  30.076458  10
4  20.000000  20.000000  20.000000  20.000000  20
     a          b    c          d   e
0  100  73.833921  100   5.675815  20
1  100  66.851601  100  92.071097  20
2  100  24.314520  100  57.313429  20
3  100  61.310945  100  30.076458  20
4  100  20.000000  100  20.000000  20
# 删除  del / drop()

df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   columns = ['a','b','c','d'])
print(df)

del df['a']
print(df)
print('-----')
# del语句 - 删除列

print(df.drop(0))
print(df.drop([1,2]))
print(df)
print('-----')
# drop()删除行,inplace=False → 删除后生成新的数据,不改变原数据

print(df.drop(['d'], axis = 1))
print(df)
# drop()删除列,需要加上axis = 1,inplace=False → 删除后生成新的数据,不改变原数据
  a          b          c          d
0  91.866806  88.753655  18.469852  71.651277
1  64.835568  33.844967   6.391246  54.916094
2  75.930985  19.169862  91.042457  43.648258
3  15.863853  24.788866  10.625684  82.135316
           b          c          d
0  88.753655  18.469852  71.651277
1  33.844967   6.391246  54.916094
2  19.169862  91.042457  43.648258
3  24.788866  10.625684  82.135316
-----
           b          c          d
1  33.844967   6.391246  54.916094
2  19.169862  91.042457  43.648258
3  24.788866  10.625684  82.135316
           b          c          d
0  88.753655  18.469852  71.651277
3  24.788866  10.625684  82.135316
           b          c          d
0  88.753655  18.469852  71.651277
1  33.844967   6.391246  54.916094
2  19.169862  91.042457  43.648258
3  24.788866  10.625684  82.135316
-----
           b          c
0  88.753655  18.469852
1  33.844967   6.391246
2  19.169862  91.042457
3  24.788866  10.625684
           b          c          d
0  88.753655  18.469852  71.651277
1  33.844967   6.391246  54.916094
2  19.169862  91.042457  43.648258
3  24.788866  10.625684  82.135316

删除重复的值

本来uid列有多个重复的id,drop_duplicates()可以删除重复的uid,并保留第一个或最后一个uid

last_loan_time.drop_duplicates(subset='uid', keep='last', inplace=True)

agg()对一张表同时做多个操作,并生成多个新列

stat_feat = ['min','mean','max','std','median']
        statistic_df = statistic_df.groupby('uid')['loan_amount'].agg(stat_feat).reset_index()
        statistic_df.columns = ['uid'] + ['loan_' + col for col in stat_feat]

# 对齐

df1 = pd.DataFrame(np.random.randn(10, 4), columns=['A', 'B', 'C', 'D'])
df2 = pd.DataFrame(np.random.randn(7, 3), columns=['A', 'B', 'C'])
print(df1 + df2)
# DataFrame对象之间的数据自动按照列和索引(行标签)对齐
A         B         C   D
0 -0.281123 -2.529461  1.325663 NaN
1 -0.310514 -0.408225 -0.760986 NaN
2 -0.172169 -2.355042  1.521342 NaN
3  1.113505  0.325933  3.689586 NaN
4  0.107513 -0.503907 -1.010349 NaN
5 -0.845676 -2.410537 -1.406071 NaN
6  1.682854 -0.576620 -0.981622 NaN
7       NaN       NaN       NaN NaN
8       NaN       NaN       NaN NaN
9       NaN       NaN       NaN NaN

排序

# 排序1 - 按值排序 .sort_values
# 同样适用于Series

df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   columns = ['a','b','c','d'])
print(df1)
print(df1.sort_values(['a'], ascending = True))  # 升序
print(df1.sort_values(['a'], ascending = False))  # 降序
print('------')
# ascending参数:设置升序降序,默认升序
# 单列排序

df2 = pd.DataFrame({'a':[1,1,1,1,2,2,2,2],
                  'b':list(range(8)),
                  'c':list(range(8,0,-1))})
print(df2)
print(df2.sort_values(['a','c']))
# 多列排序,按列顺序排序
   a          b          c          d
0  16.519099  19.601879  35.464189  58.866972
1  34.506472  97.106578  96.308244  54.049359
2  87.177828  47.253416  92.098847  19.672678
3  66.673226  51.969534  71.789055  14.504191
           a          b          c          d
0  16.519099  19.601879  35.464189  58.866972
1  34.506472  97.106578  96.308244  54.049359
3  66.673226  51.969534  71.789055  14.504191
2  87.177828  47.253416  92.098847  19.672678
           a          b          c          d
2  87.177828  47.253416  92.098847  19.672678
3  66.673226  51.969534  71.789055  14.504191
1  34.506472  97.106578  96.308244  54.049359
0  16.519099  19.601879  35.464189  58.866972
------
   a  b  c
0  1  0  8
1  1  1  7
2  1  2  6
3  1  3  5
4  2  4  4
5  2  5  3
6  2  6  2
7  2  7  1
   a  b  c
3  1  3  5
2  1  2  6
1  1  1  7
0  1  0  8
7  2  7  1
6  2  6  2
5  2  5  3
4  2  4  4
# 排序2 - 索引排序 .sort_index

df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                  index = [5,4,3,2],
                   columns = ['a','b','c','d'])
df2 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                  index = ['h','s','x','g'],
                   columns = ['a','b','c','d'])
print(df1)
print(df1.sort_index())
print(df2)
print(df2.sort_index())
# 按照index排序
# 默认 ascending=True, inplace=False
  a          b          c          d
5  57.327269  87.623119  93.655538   5.859571
4  69.739134  80.084366  89.005538  56.825475
3  88.148296   6.211556  68.938504  41.542563
2  29.248036  72.005306  57.855365  45.931715
           a          b          c          d
2  29.248036  72.005306  57.855365  45.931715
3  88.148296   6.211556  68.938504  41.542563
4  69.739134  80.084366  89.005538  56.825475
5  57.327269  87.623119  93.655538   5.859571
           a          b          c          d
h  50.579469  80.239138  24.085110  39.443600
s  30.906725  39.175302  11.161542  81.010205
x  19.900056  18.421110   4.995141  12.605395
g  67.760755  72.573568  33.507090  69.854906
           a          b          c          d
g  67.760755  72.573568  33.507090  69.854906
h  50.579469  80.239138  24.085110  39.443600
s  30.906725  39.175302  11.161542  81.010205
x  19.900056  18.421110   4.995141  12.605395
posted @ 2018-09-21 22:47  nxf_rabbit75  阅读(1177)  评论(0编辑  收藏  举报