Leetcode---6.滑动窗口篇

滑动窗口算法框架

点击查看代码
void slidingWindow(string s, string t) {
    unordered_map<char, int> need, window;
    for (char c : t) need[c]++;

    int left = 0, right = 0;
    int valid = 0; 
    while (right < s.size()) {
        // c 是将移入窗口的字符
        char c = s[right];
        // 右移窗口
        right++;
        // 进行窗口内数据的一系列更新
        ...

        /*** debug 输出的位置 ***/
        printf("window: [%d, %d)\n", left, right);
        /********************/

        // 判断左侧窗口是否要收缩
        while (window needs shrink) {
            // d 是将移出窗口的字符
            char d = s[left];
            // 左移窗口
            left++;
            // 进行窗口内数据的一系列更新
            ...
        }
    }
}

套模板前需要思考以下四个问题:

  1. 当移动 right 扩大窗口,即加入字符时,应该更新哪些数据?
  2. 什么条件下,窗口应该暂停扩大,开始移动 left 缩小窗口?
  3. 当移动 left 缩小窗口,即移出字符时,应该更新哪些数据?
  4. 我们要的结果应该在扩大窗口时还是缩小窗口时进行更新?

一、最小覆盖子串

点击查看代码
    public String minWindow(String s, String t) {
        // 统计字符串t的词频
        Map<Character, Integer> need = new HashMap<>();
        for (Character c : t.toCharArray()) {
            need.put(c, need.getOrDefault(c, 0) + 1);
        }

        // 记录滑动窗口的词频
        Map<Character, Integer> window = new HashMap<>();
        // 记录当前窗口中有多少个字符已经满足要求
        int valid = 0;
        // 记录最小覆盖子串中的起始位置和长度
        int start = 0, len = Integer.MAX_VALUE;
        // 开始滑动窗口(左闭右开)
        int left = 0;
        int right = 0;
        while (right < s.length()) {
            // c是将移入窗口的字符
            char c = s.charAt(right);
            // 右移窗口
            right++;
            // 进行窗口内数据的一系列更新
            if (need.containsKey(c)) {
                window.put(c, window.getOrDefault(c, 0) + 1);
                if (window.get(c).equals(need.get(c))) {
                    valid++;
                }
            }
            // 判断左侧窗口是否要收缩
            while (valid == need.size()) {
                if (right - left < len) {
                    start = left;
                    len = right - left;
                }
                // d是将移除窗口的字符
                char d = s.charAt(left);
                // 右移窗口
                left++;
                // 进行窗口内数据的一系列更新
                if (need.containsKey(d)) {
                    if (window.get(d).equals(need.get(d))) {
                        valid--;
                    }
                    window.put(d, window.get(d) - 1);
                }

            }
        }
        return len == Integer.MAX_VALUE ? "" : s.substring(start, start + len);
    }
需要注意的是,当我们发现某个字符在 window 的数量满足了 need 的需要,就要更新 valid,表示有一个字符已经满足要求。而且,你能发现,两次对窗口内数据的更新操作是完全对称的。 当 valid == need.size() 时,说明 T 中所有字符已经被覆盖,已经得到一个可行的覆盖子串,现在应该开始收缩窗口了,以便得到「最小覆盖子串」。 移动 left 收缩窗口时,窗口内的字符都是可行解,所以应该在收缩窗口的阶段进行最小覆盖子串的更新,以便从可行解中找到长度最短的最终结果。

二、字符串排列

image
对于这道题的解法代码,基本上和最小覆盖子串一模一样,只需要改变两个地方:

  1. 本题移动 left 缩小窗口的时机是窗口大小大于 t.size() 时,应为排列嘛,显然长度应该是一样的。
  2. 当发现 valid == need.size() 时,就说明窗口中就是一个合法的排列,所以立即返回 true。
点击查看代码
vector<int> findAnagrams(string s, string t) {
    unordered_map<char, int> need, window;
    for (char c : t) need[c]++;

    int left = 0, right = 0;
    int valid = 0;
    vector<int> res; // 记录结果
    while (right < s.size()) {
        char c = s[right];
        right++;
        // 进行窗口内数据的一系列更新
        if (need.count(c)) {
            window[c]++;
            if (window[c] == need[c]) 
                valid++;
        }
        // 判断左侧窗口是否要收缩
        while (right - left >= t.size()) {
            // 当窗口符合条件时,把起始索引加入 res
            if (valid == need.size())
                res.push_back(left);
            char d = s[left];
            left++;
            // 进行窗口内数据的一系列更新
            if (need.count(d)) {
                if (window[d] == need[d])
                    valid--;
                window[d]--;
            }
        }
    }
    return res;
}

三、找所有字母异位词

image
跟寻找字符串的排列一样,只是找到一个合法异位词(排列)之后将起始索引加入 res 即可。

点击查看代码
vector<int> findAnagrams(string s, string t) {
    unordered_map<char, int> need, window;
    for (char c : t) need[c]++;

    int left = 0, right = 0;
    int valid = 0;
    vector<int> res; // 记录结果
    while (right < s.size()) {
        char c = s[right];
        right++;
        // 进行窗口内数据的一系列更新
        if (need.count(c)) {
            window[c]++;
            if (window[c] == need[c]) 
                valid++;
        }
        // 判断左侧窗口是否要收缩
        while (right - left >= t.size()) {
            // 当窗口符合条件时,把起始索引加入 res
            if (valid == need.size())
                res.push_back(left);
            char d = s[left];
            left++;
            // 进行窗口内数据的一系列更新
            if (need.count(d)) {
                if (window[d] == need[d])
                    valid--;
                window[d]--;
            }
        }
    }
    return res;
}

四、最长无重复子串

image

点击查看代码
int lengthOfLongestSubstring(string s) {
    unordered_map<char, int> window;

    int left = 0, right = 0;
    int res = 0; // 记录结果
    while (right < s.size()) {
        char c = s[right];
        right++;
        // 进行窗口内数据的一系列更新
        window[c]++;
        // 判断左侧窗口是否要收缩
        while (window[c] > 1) {
            char d = s[left];
            left++;
            // 进行窗口内数据的一系列更新
            window[d]--;
        }
        // 在这里更新答案
        res = max(res, right - left);
    }
    return res;
}

当 window[c] 值大于 1 时,说明窗口中存在重复字符,不符合条件,就该移动 left 缩小窗口了嘛。
唯一需要注意的是,在哪里更新结果 res 呢?我们要的是最长无重复子串,哪一个阶段可以保证窗口中的字符串是没有重复的呢?
这里和之前不一样,要在收缩窗口完成后更新 res,因为窗口收缩的 while 条件是存在重复元素,换句话说收缩完成后一定保证窗口中没有重复。

参考链接:
【1】我写了首诗,把滑动窗口算法算法变成了默写题 :: labuladong的算法小抄

posted @ 2022-01-16 14:39  nxf_rabbit75  阅读(81)  评论(0编辑  收藏  举报