seaborn分布图---单分布(直方图distplot、核函数密度估计图kdeplot)、双分布(双变量关系图jointplot、变量关系组图pairplot、将数组中的数据点绘制为轴上的数据rugplot)

分布图包括单变量核密度曲线,直方图,双变量多变量的联合直方图,和密度图

1.单分布

(1)直方图distpot

seaborn.distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None, hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None, color=None, vertical=False, norm_hist=False, axlabel=None, label=None, ax=None)
  • seaborn.distplot

  • 设置 kde=False 则可以只绘制直方图,或者 hist=False 只绘制核密度估计图

举例:

sns.distplot(iris["sepal_length"])

(2)核函数密度估计图kdeplot

seaborn.kdeplot(data, data2=None, shade=False, vertical=False, kernel='gau', bw='scott', gridsize=100, cut=3, clip=None, legend=True, cumulative=False, shade_lowest=True, cbar=False, cbar_ax=None, cbar_kws=None, ax=None, **kwargs)
  • kdeplot 可以专门用于绘制核密度估计图,其效果和 distplot(hist=False) 一致,但 kdeplot 拥有更多的自定义设置
  • seaborn.kdeplot

举例:

sns.kdeplot(iris["sepal_length"])

2.双分布

(1)二元变量分布图jointplot

seaborn.jointplot(x, y, data=None, kind='scatter', stat_func=None, color=None, height=6, ratio=5, space=0.2, dropna=True, xlim=None, ylim=None, joint_kws=None, marginal_kws=None, annot_kws=None, **kwargs)
  • seaborn.jointplot

  • jointplot 并不是一个 Figure-level 接口,但其支持 kind= 参数指定绘制出不同样式的分布图。例如,绘制出核密度估计对比图 kind = 'kde'。
  • kind='hex'绘制六边形计数图
  • kind='reg'绘制回归拟合图

举例:

例如,我们探寻 sepal_length 和 sepal_width 二元特征变量之间的关系。

sns.jointplot(x="sepal_length", y="sepal_width", data=iris)  

(2)变量关系组图pairpot

支持将数据集中的特征变量两两对比绘图,默认情况下,对角线上是单变量分布图,而其他是二元变量分布图

seaborn.pairplot(data, hue=None, hue_order=None, palette=None, vars=None, x_vars=None, y_vars=None, kind='scatter', diag_kind='auto', markers=None, height=2.5, aspect=1, dropna=True, plot_kws=None, diag_kws=None, grid_kws=None, size=None)

举例:

sns.pairplot(iris, hue="species")

(3)将数组中的数据点绘制为轴上的数据rugplot

seaborn.rugplot(a, height=0.05, axis='x', ax=None, **kwargs)

  

posted @ 2019-12-25 19:35  nxf_rabbit75  阅读(1721)  评论(0编辑  收藏  举报