seaborn类别图---catplot 、分类散点图stripplot/swarmplot、分类分布图boxplot/boxplot/boxenplot、分类估计图pointplot/barplot/countplot
分类:
Seaborn
1. 分类散点图
(1)散点图striplot(kind='strip')
方法1:
1 | seaborn.stripplot(x = None , y = None , hue = None , data = None , order = None , hue_order = None , jitter = True , dodge = False , orient = None , color = None , palette = None , size = 5 , edgecolor = 'gray' , linewidth = 0 , ax = None , * * kwargs) |
方法2:catplot的kind默认=striplot
1 | sns.catplot(x = "sepal_length" , y = "species" , data = iris) |
(2)带分布的散点图swarmplot(kind='swarm')
方法1:
1 | seaborn.swarmplot(x = None , y = None , hue = None , data = None , order = None , hue_order = None , dodge = False , orient = None , color = None , palette = None , size = 5 , edgecolor = 'gray' , linewidth = 0 , ax = None , * * kwargs) |
方法2:
1 | sns.catplot(x = "sepal_length" , y = "species" , kind = "swarm" , data = iris) |
2. 分类分布图
(1)箱线图boxplot(kind='box')
方法1:
1 | seaborn.boxplot(x = None , y = None , hue = None , data = None , order = None , hue_order = None , orient = None , color = None , palette = None , saturation = 0.75 , width = 0.8 , dodge = True , fliersize = 5 , linewidth = None , whis = 1.5 , notch = False , ax = None , * * kwargs) |
方法2:
1 | sns.catplot(x = "sepal_length" , y = "species" , data = iris) |
(2)小提琴图violinplot(kind='violin')
方法1:
1 | seaborn.violinplot(x = None , y = None , hue = None , data = None , order = None , hue_order = None , bw = 'scott' , cut = 2 , scale = 'area' , scale_hue = True , gridsize = 100 , width = 0.8 , inner = 'box' , split = False , dodge = True , orient = None , linewidth = None , color = None , palette = None , saturation = 0.75 , ax = None , * * kwargs) |
方法2:
1 | sns.catplot(x = "sepal_length" , y = "species" , kind = "violin" , data = iris) |
(3)boxenplot(kind='boxen')
方法1:
1 | seaborn.boxenplot(x = None , y = None , hue = None , data = None , order = None , hue_order = None , orient = None , color = None , palette = None , saturation = 0.75 , width = 0.8 , dodge = True , k_depth = 'proportion' , linewidth = None , scale = 'exponential' , outlier_prop = None , ax = None , * * kwargs) |
方法2:
1 | sns.catplot(x = "species" , y = "sepal_length" , kind = "boxen" , data = iris) |
3. 分类估计图
(1)pointplot(kind='point')
方法1:
1 | seaborn.pointplot(x = None , y = None , hue = None , data = None , order = None , hue_order = None , estimator = <function mean>, ci = 95 , n_boot = 1000 , units = None , markers = 'o' , linestyles = '-' , dodge = False , join = True , scale = 1 , orient = None , color = None , palette = None , errwidth = None , capsize = None , ax = None , * * kwargs) |
方法2:
1 | sns.catplot(x = "sepal_length" , y = "species" , kind = "point" , data = iris) |
(2)直方图barplot(kind='bar')
方法1:
1 | seaborn.barplot(x = None , y = None , hue = None , data = None , order = None , hue_order = None , estimator = <function mean>, ci = 95 , n_boot = 1000 , units = None , orient = None , color = None , palette = None , saturation = 0.75 , errcolor = '.26' , errwidth = None , capsize = None , dodge = True , ax = None , * * kwargs) |
方法2:
1 | sns.catplot(x = "sepal_length" , y = "species" , kind = "bar" , data = iris) |
(3)计数的直方图countplot(kind='count')
方法1:
1 | seaborn.countplot(x = None , y = None , hue = None , data = None , order = None , hue_order = None , orient = None , color = None , palette = None , saturation = 0.75 , dodge = True , ax = None , * * kwargs) |
方法2:
1 | sns.catplot(x = "species" , kind = "count" , data = iris) |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 使用C#创建一个MCP客户端
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 按钮权限的设计及实现