tf.reshape()
1.tf.reshape
reshape(tensor, shape, name=None)
作用:重塑张量。给定张量,此操作将返回与形状为shape的张量具有相同值的张量。 如果“形状”的一个分量为特殊值-1,则将计算该尺寸的大小,以使总大小保持恒定。 具体来说,[-1]的“形状”会展平为一维。 “形状”的至多一个分量可以为-1。 如果“ shape”为一维或更高,则该操作将返回一个形状为“ shape”的张量,其中填充了“ tensor”的值。 在这种情况下,“形状”所隐含的元素数量必须与“张量”中的元素数量相同。
举例:
For example: ``` # tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9] # tensor 't' has shape [9] reshape(t, [3, 3]) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # tensor 't' is [[[1, 1], [2, 2]], # [[3, 3], [4, 4]]] # tensor 't' has shape [2, 2, 2] reshape(t, [2, 4]) ==> [[1, 1, 2, 2], [3, 3, 4, 4]] # tensor 't' is [[[1, 1, 1], # [2, 2, 2]], # [[3, 3, 3], # [4, 4, 4]], # [[5, 5, 5], # [6, 6, 6]]] # tensor 't' has shape [3, 2, 3] # pass '[-1]' to flatten 't' reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6] # -1 can also be used to infer the shape # -1 is inferred to be 9: reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3], [4, 4, 4, 5, 5, 5, 6, 6, 6]] # -1 is inferred to be 2: reshape(t, [-1, 9]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3], [4, 4, 4, 5, 5, 5, 6, 6, 6]] # -1 is inferred to be 3: reshape(t, [ 2, -1, 3]) ==> [[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]] # tensor 't' is [7] # shape `[]` reshapes to a scalar reshape(t, []) ==> 7 ``` Args: tensor: A `Tensor`. shape: A `Tensor`. Must be one of the following types: `int32`, `int64`. Defines the shape of the output tensor. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `tensor`. """
bert中源码:
# If the input is a 2D tensor of shape [batch_size, seq_length], we # reshape to [batch_size, seq_length, 1]. if input_ids.shape.ndims == 2: input_ids = tf.expand_dims(input_ids, axis=[-1]) embedding_table = tf.get_variable( name=word_embedding_name, shape=[vocab_size, embedding_size], initializer=create_initializer(initializer_range)) flat_input_ids = tf.reshape(input_ids, [-1]) #【batch_size*seq_length*input_num】