tf.one_hot()
分类:
TensorFlow
1.tf.one_hot()
1 | one_hot(indices,depth,on_value = None ,off_value = None ,axis = None ,dtype = None ,name = None ) |
作用:将input转化为one-hot类型数据输出,相当于将多个数值联合放在一起作为多个相同类型的向量,可用于表示各自的概率分布,通常用于分类任务中作为最后的FC层的输出,有时翻译成“独热”编码。
- indices表示输入的多个数值,通常是矩阵形式;
- depth表示输出的尺寸。由于one-hot类型数据长度为depth位,其中只用一位数字表示原输入数据,这里的on_value就是这个数字,默认值为1,one-hot数据的其他位用off_value表示,默认值为0。
- tf.one_hot()函数规定输入的元素indices从0开始,最大的元素值不能超过(depth - 1),因此能够表示depth个单位的输入。若输入的元素值超出范围,输出的编码均为 [0, 0 … 0, 0]。
- indices = 0 对应的输出是[1, 0 … 0, 0], indices = 1 对应的输出是[0, 1 … 0, 0], 依次类推,最大可能值的输出是[0, 0 … 0, 1]。
bert源码:
1 2 3 4 5 6 | flat_input_ids = tf.reshape(input_ids, [ - 1 ]) #【batch_size*seq_length*input_num】 if use_one_hot_embeddings: one_hot_input_ids = tf.one_hot(flat_input_ids, depth = vocab_size) output = tf.matmul(one_hot_input_ids, embedding_table) else : output = tf.gather(embedding_table, flat_input_ids) |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 使用C#创建一个MCP客户端
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 按钮权限的设计及实现