Transformer模型---decoder

一、结构

1.编码器

Transformer模型---encoder - nxf_rabbit75 - 博客园

2.解码器

(1)第一个子层也是一个多头自注意力multi-head self-attention层,但是,在计算位置i的self-attention时屏蔽掉了位置i之后的序列值,这意味着:位置i的attention只能依赖于它之前的结果,不能依赖它之后的结果。因此,这种self-attention也被称作masked self-attention。

(2)第二个子层是一个多头注意力multi-head attention层,用于捕获decoder output和encoder output之间的attention。第三个子层是一个简单的全连接层。

(3)和encoder一样:每个子层都使用残差直连,并且残差直连之后跟随一个layer normalization:LN;decoder所有层的输入、输出的向量维度也是dmodel=512维。

二、Tips

1.使用multi-head attention的三个适用场景:

  encoder-decoder attention:使用multi-head attention,输入为encoder的输出和decoder的self-attention输出,其中encoder的self-attention作为 key and value,decoder的self-attention作为query

  encoder self-attention:使用 multi-head attention,输入的Q、K、V都是一样的(input embedding and positional embedding)
  decoder self-attention:在decoder的self-attention层中,deocder 都能够访问当前位置前面的位置

2.decoder的masked self-attention

注意encoder里面是叫self-attention,decoder里面是叫masked self-attention。

这里的masked就是要在做language modelling(或者像翻译)的时候,不给模型看到未来的信息。

3.优化

三、Transformer vs CNN vs RNN

 1.假设输入序列长度为n,每个元素的维度为d:{x1,...,xn},输出序列长度也为n,每个元素的维度也是d:{y1,...,yn},从每层的计算复杂度、并行的操作数量、学习距离长度三个方面比较Transformer、CNN、RNN三个特征提取器:

1.每层的计算复杂度:

  考虑到n个key和n个query两两点乘,因此self-attention每层计算复杂度为O(n2d)

  考虑到矩阵(维度为nn)和输入向量相乘,因此RNN每层计算复杂度为O(nd2)

  对于k个卷积核经过n次一维卷积,因此CNN每层计算复杂度为O(knd2),如果考虑深度可分离卷积,则计算复杂度下降为O(knd+nd2)

因此:

  当n<d时,self attention要比RNN和CNN快;

  当n>d时,可以使用受限self attention,即:计算attention时仅考虑每个输出位置附近窗口的r个输入。这将带来两个效果:每层计算复杂度降为O(rnd)

  最长学习距离降低为r,因此需要执行O(n/r)次才能覆盖到所有输入。

2.并行操作数量:

可以通过必须串行的操作数量来描述:

  对于self-attention,CNN,其串行操作数量为O(1),并行度最大;

  对于RNN,其串行操作数量为O(n),较难并行化。

3.最长计算路径:

覆盖所有输入的操作的数量

  对于self-attention,最长计算路径为O(1);对于self-attention stricted,最长计算路径为O(n/r);

  对于常规卷积,则需要O(n/k)个卷积才能覆盖所有的输入;对于空洞卷积,则需要O(logkn)才能覆盖所有的输入;

  对于RNN,最长计算路径为O(n)

4.作为额外收益,self-attention可以产生可解释性的模型:

通过检查模型中的注意力分布,可以展示与句子语法和语义结构相关的信息。

 

 

 

 

参考文献:

【1】BERT专题系列(二):Transformer (Attention is all you need)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili

【2】NLP学习(5)----attention/ self-attention/ seq2seq/ transformer - Lee_yl - 博客园

posted @   nxf_rabbit75  阅读(2558)  评论(0编辑  收藏  举报
编辑推荐:
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 使用C#创建一个MCP客户端
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 按钮权限的设计及实现
一、结构1.编码器2.解码器二、Tips1.使用multi-head attention的三个适用场景:2.decoder的masked self-attention3.优化三、Transformer vs CNN vs RNN1.每层的计算复杂度:2.并行操作数量:3.最长计算路径:4.作为额外收益,self-attention可以产生可解释性的模型:
点击右上角即可分享
微信分享提示