tf.variable_scope()和tf.name_scope()

1.tf.variable_scope

功能:tf.variable_scope可以让不同命名空间中的变量取相同的名字,无论tf.get_variable或者tf.Variable生成的变量

TensorFlow链接:https://tensorflow.google.cn/api_docs/python/tf/variable_scope?hl=en

举例:

with tf.variable_scope('V1'):
    a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a2 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2')
with tf.variable_scope('V2'):
    a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a4 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2')

with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    print(a1.name)
    print(a2.name)
    print(a3.name)
    print(a4.name)

with tf.variable_scope("foo"):
    v = tf.get_variable("v", [1])
with tf.variable_scope("foo", reuse=True):
    v1 = tf.get_variable("v", [1])
assert v1 == v #不报错

 

如果想要重用变量,可以设置reuse_variables()

import numpy as np
with tf.variable_scope('V1'):
    a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a2 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2')
    tf.get_variable_scope().reuse_variables()
    assert tf.get_variable_scope().reuse == True
    a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a4 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2')

with tf.variable_scope('V1',reuse=True):
    a5 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))

with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    print(a1.name)
    print(a2.name)
    print(a3.name)
    print(a4.name)
    print(a5.name)

variable重名,虽然name设置的一样,但是实际是不共享同一个变量的;get_variable重name,其实是共享的同一个变量。

 

2.tf.name_scope

功能:tf.name_scope具有类似的功能,但只限于tf.Variable生成的变量

TensorFlow链接:https://tensorflow.google.cn/api_docs/python/tf/name_scope?hl=en

with tf.name_scope('V1'):
    a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a2 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2')
with tf.name_scope('V2'):
    a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a4 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2')

with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    print(a1.name)
    print(a2.name)
    print(a3.name)
    print(a4.name)

a1,a3会报错:ValueError: Variable a1 already exists, disallowed. Did you mean to set reuse=True or reuse=tf.AUTO_REUSE in VarScope? Originally defined at:

 

 

 

参考文献:

【1】tf.variable_scope和tf.name_scope的用法

【2】参数共享:https://jasdeep06.github.io/posts/variable-sharing-in-tensorflow/

posted @ 2019-07-31 16:12  nxf_rabbit75  阅读(615)  评论(0编辑  收藏  举报