tf.variable_scope()和tf.name_scope()

1.tf.variable_scope

功能:tf.variable_scope可以让不同命名空间中的变量取相同的名字,无论tf.get_variable或者tf.Variable生成的变量

TensorFlow链接:https://tensorflow.google.cn/api_docs/python/tf/variable_scope?hl=en

举例:

1
2
3
4
5
6
7
8
9
10
11
12
13
with tf.variable_scope('V1'):
    a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a2 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2')
with tf.variable_scope('V2'):
    a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a4 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2')
 
with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    print(a1.name)
    print(a2.name)
    print(a3.name)
    print(a4.name)

1
2
3
4
5
with tf.variable_scope("foo"):
    v = tf.get_variable("v", [1])
with tf.variable_scope("foo", reuse=True):
    v1 = tf.get_variable("v", [1])
assert v1 == v #不报错

 

如果想要重用变量,可以设置reuse_variables()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import numpy as np
with tf.variable_scope('V1'):
    a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a2 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2')
    tf.get_variable_scope().reuse_variables()
    assert tf.get_variable_scope().reuse == True
    a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a4 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2')
 
with tf.variable_scope('V1',reuse=True):
    a5 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
 
with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    print(a1.name)
    print(a2.name)
    print(a3.name)
    print(a4.name)
    print(a5.name)

variable重名,虽然name设置的一样,但是实际是不共享同一个变量的;get_variable重name,其实是共享的同一个变量。

 

2.tf.name_scope

功能:tf.name_scope具有类似的功能,但只限于tf.Variable生成的变量

TensorFlow链接:https://tensorflow.google.cn/api_docs/python/tf/name_scope?hl=en

1
2
3
4
5
6
7
8
9
10
11
12
13
with tf.name_scope('V1'):
    a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a2 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2')
with tf.name_scope('V2'):
    a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    a4 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2')
 
with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    print(a1.name)
    print(a2.name)
    print(a3.name)
    print(a4.name)

a1,a3会报错:ValueError: Variable a1 already exists, disallowed. Did you mean to set reuse=True or reuse=tf.AUTO_REUSE in VarScope? Originally defined at:

 

 

 

参考文献:

【1】tf.variable_scope和tf.name_scope的用法

【2】参数共享:https://jasdeep06.github.io/posts/variable-sharing-in-tensorflow/

posted @   nxf_rabbit75  阅读(626)  评论(0编辑  收藏  举报
编辑推荐:
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 使用C#创建一个MCP客户端
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 按钮权限的设计及实现
1.tf.variable_scope2.tf.name_scope
点击右上角即可分享
微信分享提示