27.t分布随机近邻嵌入t-SNE

t分布随机近邻嵌入(t-distributed Stohastic Neighbor Embedding)

基本思路:为高维特征空间在二维平面(或三维超平面,不过基本上总是使用二维空间)上寻找一个投影,使得在原本的n维空间中相距很远的数据点在屏幕上同样相距较远,而原本相近的点在平面上仍然相近。本质上,近邻嵌入寻找保留了样本的邻居关系的新的维度较低的数据表示。

 

参数:

  • perplexity 困惑度
  • step 迭代次数
  • epsilon 学习率

 

 

参考文献:

【1】机器学习开放课程:二、使用Python可视化数据

【2】高维数据可视化之t-SNE算法🌈 - 知乎(理论推导+实验)

posted @   nxf_rabbit75  阅读(848)  评论(0编辑  收藏  举报
编辑推荐:
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 使用C#创建一个MCP客户端
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 按钮权限的设计及实现
点击右上角即可分享
微信分享提示