numpy处理时间序列

1. 字符串转成numpy.datetime64格式

1
2
3
4
5
import numpy as np
#将字符串转换成numpy格式时间
#注意个位前补0,如1月写成01
nd=np.datetime64('2019-01-10')
nd

1
np.datetime64('1901')

 

2. numpy.datetime64转成字符串格式

1
2
#转化为字符串
np.datetime_as_string(nd)

 

3.  np.arange生成时间序列

1
2
3
#生成时间序列
#默认以日为间隔,算头不算尾
np.arange('2019-01-05','2019-01-10',dtype='datetime64')

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
#设定随机种子(括号里的数字只是起标记作用)
np.random.seed(1)
#h:小时,m:分,s:秒,ms微秒
#生成分时
x=np.arange('2019-01-10T00:00:00','2019-01-10T23:00:00',dtype='datetime64[m]')
#生成标准正态分布时间序列
y=np.random.standard_normal(len(x))
#设置图片大小
fig=plt.figure(figsize=(12,6))
#将x的np.datetime转换为datetime.datetime
plt.plot(x.astype(datetime),y)
fig.autofmt_xdate()
plt.title('模拟23小时内每分钟正态分布的随机数分布')
# 将右边 上边的两条边颜色设置为空 其实就相当于抹掉这两条边
ax = plt.gca() 
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none'
plt.show()

 

  

参考文献:

【1】【手把手教你】Python处理金融数据

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

posted @   nxf_rabbit75  阅读(2685)  评论(0编辑  收藏  举报
编辑推荐:
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 使用C#创建一个MCP客户端
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 按钮权限的设计及实现
1. 字符串转成numpy.datetime64格式2. numpy.datetime64转成字符串格式3.  np.arange生成时间序列
点击右上角即可分享
微信分享提示