模型融合---Stacking调参总结
1. 回归
训练了两个回归器,GBDT和Xgboost,用这两个回归器做stacking
使用之前已经调好参的训练器
gbdt_nxf = GradientBoostingRegressor(learning_rate=0.06,n_estimators=250, min_samples_split=700,min_samples_leaf=70,max_depth=6, max_features='sqrt',subsample=0.8,random_state=75) xgb_nxf = XGBRegressor(learning_rate=0.06,max_depth=6,n_estimators=200,random_state=75)
事先建好stacking要用到的矩阵
from sklearn.model_selection import KFold,StratifiedKFold kf = StratifiedKFold(n_splits=5,random_state=75,shuffle=True) from sklearn.metrics import r2_score train_proba = np.zeros((len(gbdt_train_data),2)) train_proba = pd.DataFrame(train_proba) train_proba.columns = ['gbdt_nxf','xgb_nxf'] test_proba = np.zeros((len(gbdt_test_data),2)) test_proba = pd.DataFrame(test_proba) test_proba.columns = ['gbdt_nxf','xgb_nxf']
reg_names = ['gbdt_nxf','xgb_nxf'] for i,reg in enumerate([gbdt_nxf,xgb_nxf]): pred_list = [] col = reg_names[i] for train_index,val_index in kf.split(gbdt_train_data,gbdt_train_label): x_train = gbdt_train_data.loc[train_index,:].values y_train = gbdt_train_label[train_index] x_val = gbdt_train_data.loc[val_index,:].values y_val = gbdt_train_label[val_index] reg.fit(x_train,y_train) y_vali = reg.predict(x_val) train_proba.loc[val_index,col] = y_vali print('%s cv r2 %s'%(col,r2_score(y_val,y_vali))) y_testi = reg.predict(gbdt_test_data.values) pred_list.append(y_testi) test_proba.loc[:,col] = np.mean(np.array(pred_list),axis=0)
r2值最高为0.79753,效果还不是特别的好
然后用五折交叉验证,每折都预测整个测试集,得到五个预测的结果,求平均,就是新的预测集;而训练集就是五折中任意四折预测该折的训练集得到的标签的集合
因为有两个训练器,GBDT和Xgboost,所以我们得到了两列的train_proba
最后对新的训练集和测试集做回归,得到我们的结果
#使用逻辑回归做stacking from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression scalar = StandardScaler() # train_proba = train_proba.values # test_proba = test_proba.values scalar.fit(train_proba) train_proba = scalar.transform(train_proba) test_proba = scalar.transform(test_proba) lr = LogisticRegression(tol=0.0001,C=0.5,random_state=24,max_iter=10) kf = StratifiedKFold(n_splits=5,random_state=75,shuffle=True) r2_list = [] pred_list = [] for train_index,val_index in kf.split(train_proba,gbdt_train_label):#训练集的标签还是一开始真实的训练集的标签 x_train = train_proba[train_index] y_train = gbdt_train_label[train_index] x_val = train_proba[val_index] y_val = gbdt_train_label[val_index] lr.fit(x_train,y_train) y_vali = lr.predict(x_val) print('lr stacking cv r2 %s'%(r2_score(y_val,y_vali))) r2_list.append(r2_score(y_val,y_vali)) y_testi = lr.predict(test_proba) pred_list.append(y_testi) print(lr.coef_,lr.n_iter_)#过拟合很严重
2. 分类
经过对每个单模型进行调参之后,我们可以把这些模型进行 stacking 集成。
如上图所示,我们将数据集分成均匀的5部分进行交叉训练,使用其中的4部分训练,之后将训练好的模型对剩下的1部分进行预测,同时预测测试集;经过5次cv之后,我们可以得到训练集每个样本的预测值,同时得到测试集的5个预测值,我们将测试集的5个测试集进行平均。有多少个基模型,我们会得到几组不同的预测值;最后使用一个模型对上一步得到预测结果再进行训练预测,得到stacking结果。stacking模型一般使用线性模型。
stacking 有点像神经网络,基模型就像底层的神经网络对输入数据进行特征的提取,如下图所示:
首先我们先定义一个DataFrame 格式数据结构荣来存储中间预测结果:
train_proba = np.zeros((len(train), 6)) train_proba = pd.DataFrame(train_proba) train_proba.columns = ['rf','ada','etc','gbc','sk_xgb','sk_lgb'] test_proba = np.zeros((len(test), 6)) test_proba = pd.DataFrame(test_proba) test_proba.columns = ['rf','ada','etc','gbc','sk_xgb','sk_lgb']
定义基模型,交叉训练预测
rf = RandomForestClassifier(n_estimators=700, max_depth=13, min_samples_split=30,\ min_weight_fraction_leaf=0.0, random_state=24, verbose=0) ada = AdaBoostClassifier(n_estimators=450, learning_rate=0.1, random_state=24) gbc = GradientBoostingClassifier(learning_rate=0.08,n_estimators=150,max_depth=9, min_samples_leaf=70,min_samples_split=900, max_features='sqrt',subsample=0.8,random_state=10) etc = ExtraTreesClassifier(n_estimators=290, max_depth=12, min_samples_split=30,random_state=24) sk_xgb = XGBClassifier(learning_rate=0.05,n_estimators=400, min_child_weight=20,max_depth=3,subsample=0.8, colsample_bytree=0.8, reg_lambda=1., random_state=10) sk_lgb = LGBMClassifier(num_leaves=31,max_depth=3,learing_rate=0.03,n_estimators=600, subsample=0.8, colsample_bytree=0.9, objective='binary', min_child_weight=0.001, subsample_freq=1, min_child_samples=10, reg_alpha=0.0, reg_lambda=0.0, random_state=10, n_jobs=-1, silent=True, importance_type='split') kf = StratifiedKFold(n_splits=5,random_state=233,shuffle=True) clf_name = ['rf','ada','etc','gbc','sk_xgb','sk_lgb'] for i,clf in enumerate([rf,ada,etc,gbc,sk_xgb,sk_lgb]): pred_list = [] col = clf_name[i] for train_index, val_index in kf.split(train,label): X_train = train.loc[train_index,:].values y_train = label[train_index] X_val = train.loc[val_index,:].values y_val = label[val_index] clf.fit(X_train, y_train) y_vali = clf.predict_proba(X_val)[:,1] train_proba.loc[val_index,col] = y_vali print("%s cv auc %s" % (col, roc_auc_score(y_val, y_vali))) y_testi = clf.predict_proba(test.values)[:,1] pred_list.append(y_testi) test_proba.loc[:,col] = np.mean(np.array(pred_list),axis=0)
使用逻辑回归做最后的stacking
scaler = StandardScaler() train_proba = train_proba.values test_proba = test_proba.values scaler.fit(train_proba) train_proba = scaler.transform(train_proba) test_proba = scaler.transform(test_proba) lr = LogisticRegression(tol=0.0001, C=0.5, random_state=24, max_iter=10) kf = StratifiedKFold(n_splits=5,random_state=244,shuffle=True) auc_list = [] pred_list = [] for train_index, val_index in kf.split(train_proba,label): X_train = train_proba[train_index] y_train = label[train_index] X_val = train_proba[val_index] y_val = label[val_index] lr.fit(X_train, y_train) y_vali = lr.predict_proba(X_val)[:,1] print("lr stacking cv auc %s" % (roc_auc_score(y_val, y_vali))) auc_list.append(roc_auc_score(y_val, y_vali)) y_testi = lr.predict_proba(test_proba)[:,1] pred_list.append(y_testi) print(lr.coef_, lr.n_iter_)
最终各个基模型和stacking模型的 auc 得分如下图所示:
分别为 0.8415,0.8506,0.8511,0.8551,0.8572,0.8580,0.8584。