机器学习算法的调试---梯度检验(Gradient Checking)

  梯度检验是一种对求导结果进行数值检验的方法,该方法可以验证求导代码是否正确。

1. 数学原理

   考虑我们想要最小化以 θ 为自变量的目标函数 J(θ)(θ 可以为标量和可以为矢量,在 Numpy 的编程环境下,处理是一样的),迭代梯度更新公式为:

可以以sigmoid函数为例,

其导数形式为

 

我们可以实现梯度下降算法,那我们怎么知道g(z)梯度的准确性呢?

 

回忆导数的数学定义:

由此我们可得梯度校验的数值校验公式: 

这便是梯度检验的原理。在实际应用中,我们常将ϵ设置为一个很小的常数,比如10-4数量级,不会将它设的太小,比如10-20,因为那将导致数值舍入误差。事实上,上式两端值的接近程度取决于 J 的具体形式,但在假定 ϵ=10−4 的情况 下,通常会发现左右两端至少有四位有效数字是一致的(或者说精度至少在0.0001一级)。

 

2. 编程实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import numpy as np
 
def sigmoid(z):
    return 1./(1+np.exp(-z))
def sigmoid_prime(z):
    return sigmoid(z)*(1-sigmoid(z))
def check_gradient(f, x0, epsilon):
    return (f(x0+epsilon) - f(x0-epsilon))/2/epsilon
 
if __name__ == '__main__':
    x0 = np.array([1, 2, 3])
    epsilon = 1e-4
    print(sigmoid_prime(x0))
            # [ 0.19661193  0.10499359  0.04517666]
    print(check_gradient(sigmoid, x0, epsilon))
            # [ 0.19661193  0.10499359  0.04517666]

  

参考文献:

【1】机器学习算法的调试 —— 梯度检验(Gradient Checking)

 

posted @   nxf_rabbit75  阅读(1589)  评论(1编辑  收藏  举报
编辑推荐:
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 使用C#创建一个MCP客户端
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 按钮权限的设计及实现
1. 数学原理2. 编程实现
点击右上角即可分享
微信分享提示