22(5).模型融合---ExtraTree(极限树)

随机森林:是一个包含多个决策树的分类器, 并且其输出的类别是由个别树输出的类别的众数而定。随机森林对回归的结果在内部是取得平均但是并不是所有的回归都是取的平均,有些是取的和。

随机森林里的随机 极限树/极端随机树里的随机
样本随机 
特征随机 
参数随机 
模型随机(ID3 ,C4.5)
特征随机 
参数随机 
模型随机(ID3 ,C4.5) 
分裂随机 

  

  ET或Extra-Trees(Extremely randomized trees,极端随机树)算法与随机森林算法十分相似,都是由许多决策树构成。极限树与随机森林的主要区别

  • randomForest应用的是Bagging模型,extraTree使用的所有的样本,只是特征是随机选取的,因为分裂是随机的,所以在某种程度上比随机森林得到的结果更加好
  • 随机森林是在一个随机子集内得到最佳分叉属性,而ET是完全随机的得到分叉值,从而实现对决策树进行分叉的。

  对于第2点的不同,我们再做详细的介绍。我们仅以二叉树为例,当特征属性是类别的形式时,随机选择具有某些类别的样本为左分支,而把具有其他类别的样本作为右分支;当特征属性是数值的形式时,随机选择一个处于该特征属性的最大值和最小值之间的任意数,当样本的该特征属性值大于该值时,作为左分支,当小于该值时,作为右分支。这样就实现了在该特征属性下把样本随机分配到两个分支上的目的。然后计算此时的分叉值(如果特征属性是类别的形式,可以应用基尼指数;如果特征属性是数值的形式,可以应用均方误差)。遍历节点内的所有特征属性,按上述方法得到所有特征属性的分叉值,我们选择分叉值最大的那种形式实现对该节点的分叉。从上面的介绍可以看出,这种方法比随机森林的随机性更强。

  对于某棵决策树,由于它的最佳分叉属性是随机选择的,因此用它的预测结果往往是不准确的,但多棵决策树组合在一起,就可以达到很好的预测效果。

  当ET构建好了以后,我们也可以应用全部的训练样本来得到该ET的预测误差。这是因为尽管构建决策树和预测应用的是同一个训练样本集,但由于最佳分叉属性是随机选择的,所以我们仍然会得到完全不同的预测结果,用该预测结果就可以与样本的真实响应值比较,从而得到预测误差。如果与随机森林相类比的话,在ET中,全部训练样本都是OOB样本,所以计算ET的预测误差,也就是计算这个OOB误差。

 

参考文献:

【1】随机森林(randomForest)和极限树或者叫做极端随机树(extraTree)

posted @ 2019-03-04 19:08  nxf_rabbit75  阅读(3498)  评论(0编辑  收藏  举报