用于pytorch的H5Dataset接口(类比TensorDataset接口)

pytorch的TensorDataset接口

 1 class TensorDataset(Dataset):
 2     """Dataset wrapping data and target tensors.
 3     Each sample will be retrieved by indexing both tensors along the first
 4     dimension.
 5     Arguments:
 6         data_tensor (Tensor): contains sample data.
 7         target_tensor (Tensor): contains sample targets (labels).
 8     """
 9 
10     def __init__(self, data_tensor, target_tensor):
11         assert data_tensor.size(0) == target_tensor.size(0)
12         self.data_tensor = data_tensor
13         self.target_tensor = target_tensor
14 
15     def __getitem__(self, index):
16         return self.data_tensor[index], self.target_tensor[index]
17 
18     def __len__(self):
19 return self.data_tensor.size(0)

用于hdf5的H5Dataset接口

 1 class H5Dataset(Dataset):
 2     """Dataset wrapping data and target tensors.
 3 
 4     Each sample will be retrieved by indexing both tensors along the first
 5     dimension.
 6 
 7     Arguments:
 8         data_tensor (Tensor): contains sample data.
 9         target_tensor (Tensor): contains sample targets (labels).
10     """
11 
12     def __init__(self, data_tensor, target_tensor):
13         assert data_tensor.shape[0] == target_tensor.shape[0]
14         self.data_tensor = data_tensor
15         self.target_tensor = target_tensor
16 
17     def __getitem__(self, index):
18         # print(index)
19         return self.data_tensor[index], self.target_tensor[index]
20 
21     def __len__(self):
22         return self.data_tensor.shape[0]

对应的DataLoader(把TensorDataset改成H5Dataset即可)

 1 def load_data():
 2     f = h5py.File("./dataset/CAVE.h5", 'r')
 3     MS_train = f['train']["MS"]
 4     RGB_train = f['train']["RGB"]
 5     MS_test = f['test']["MS"]
 6     RGB_test = f['test']["RGB"]
 7     train_set = H5Dataset(RGB_train, MS_train)
 8     test_set = H5Dataset(RGB_test, MS_test)
 9     training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, pin_memory=True,
10                                       shuffle=True)
11     testing_data_loader = DataLoader(dataset=test_set, num_workers=opt.threads, batch_size=opt.testBatchSize, pin_memory=True,
12                                      shuffle=False)
13     return training_data_loader, testing_data_loader

 

posted @ 2017-11-16 22:03  法师漂流  阅读(4471)  评论(0编辑  收藏  举报