caffe笔记之例程学习(二)

Classification with HDF5 data

1.导入库

 1 import os
 2 import h5py
 3 import shutil
 4 import sklearn
 5 import tempfile
 6 import numpy as np
 7 import pandas as pd
 8 import sklearn.datasets
 9 import sklearn.linear_model
10 import matplotlib.pyplot as plt
11 %matplotlib inline

2.产生数据

sklearn.datasets.make_classification产生测试数据。
10000组数据,特征向量维数为4。
sklearn.cross_validation.train_test_split为交叉验证。就是把data拆分为不同的train set和test set。
这里拆分为7500:2500
1 X, y = sklearn.datasets.make_classification(
2     n_samples=10000, n_features=4, n_redundant=0, n_informative=2, 
3     n_clusters_per_class=2, hypercube=False, random_state=0
4 )
5 
6 # Split into train and test
7 X, Xt, y, yt = sklearn.cross_validation.train_test_split(X, y)

 3.数据可视化

1 # Visualize sample of the data
2 # np.random.permutation产生序列或随机交换序列
3 # X.shape=7500
4 # 在此产生0-7499乱序序列并取前1000
5 ind = np.random.permutation(X.shape[0])[:1000]
6 df = pd.DataFrame(X[ind])
7 # 绘图 'kde'核密度估计,'hist'直方图
8 _ = pd.scatter_matrix(df, figsize=(9, 9), diagonal='kde', marker='o', s=40, alpha=.4, c=y[ind])
pd.scatter_matrix函数说明
 1 def scatter_matrix(frame, alpha=0.5, figsize=None, ax=None, grid=False,
 2                    diagonal='hist', marker='.', density_kwds=None,
 3                    hist_kwds=None, range_padding=0.05, **kwds):
 4     """
 5     Draw a matrix of scatter plots.
 6 
 7     Parameters
 8     ----------
 9     frame : DataFrame
10     alpha : float, optional
11         amount of transparency applied
12     figsize : (float,float), optional
13         a tuple (width, height) in inches
14     ax : Matplotlib axis object, optional
15     grid : bool, optional
16         setting this to True will show the grid
17     diagonal : {'hist', 'kde'}
18         pick between 'kde' and 'hist' for
19         either Kernel Density Estimation or Histogram
20         plot in the diagonal
21     marker : str, optional
22         Matplotlib marker type, default '.'    
23     hist_kwds : other plotting keyword arguments
24         To be passed to hist function
25     density_kwds : other plotting keyword arguments
26         To be passed to kernel density estimate plot
27     range_padding : float, optional
28         relative extension of axis range in x and y
29         with respect to (x_max - x_min) or (y_max - y_min),
30         default 0.05
31     kwds : other plotting keyword arguments
32         To be passed to scatter function
33 
34     Examples
35     --------
36     >>> df = DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D'])
37     >>> scatter_matrix(df, alpha=0.2)
38     """
View Code

4.SGD learning及正确率

documents:scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

1 # Train and test the scikit-learn SGD logistic regression.
2 clf = sklearn.linear_model.SGDClassifier(
3     loss='log', n_iter=1000, penalty='l2', alpha=1e-3, class_weight='auto')
4 
5 # Fit linear model with Stochastic Gradient Descent.
6 clf.fit(X, y)
7 # Predict class labels for samples in X.
8 yt_pred = clf.predict(Xt)
9 print('Accuracy: {:.3f}'.format(sklearn.metrics.accuracy_score(yt, yt_pred)))

5.写HDF5数据。很直观的文件读写操作。需要注意路径。我没有改路径,而是把生成的数据手动复制到了caffe_root/examples/hdf5_classification

 1 # Write out the data to HDF5 files in a temp directory.
 2 # This file is assumed to be caffe_root/examples/hdf5_classification.ipynb
 3 dirname = os.path.abspath('./hdf5_classification/data')
 4 if not os.path.exists(dirname):
 5     os.makedirs(dirname)
 6 
 7 train_filename = os.path.join(dirname, 'train.h5')
 8 test_filename = os.path.join(dirname, 'test.h5')
 9 
10 # HDF5DataLayer source should be a file containing a list of HDF5 filenames.
11 # To show this off, we'll list the same data file twice.
12 with h5py.File(train_filename, 'w') as f:
13     f['data'] = X
14     f['label'] = y.astype(np.float32)
15 with open(os.path.join(dirname, 'train.txt'), 'w') as f:
16     f.write(train_filename + '\n')
17     f.write(train_filename + '\n')
18     
19 # HDF5 is pretty efficient, but can be further compressed.
20 comp_kwargs = {'compression': 'gzip', 'compression_opts': 1}
21 with h5py.File(test_filename, 'w') as f:
22     f.create_dataset('data', data=Xt, **comp_kwargs)
23     f.create_dataset('label', data=yt.astype(np.float32), **comp_kwargs)
24 with open(os.path.join(dirname, 'test.txt'), 'w') as f:
25     f.write(test_filename + '\n')

6.更改路径到caffe_root,用solver.prototxt设置参数,train_val.prototxt配置模型。

模型分析看这里www.cnblogs.com/nwpuxuezha/p/4297298.html

1 # Run caffe. Scroll down in the output to see the final
2 # test accuracy, which should be about the same as above.
3 !cd .. && ./build/tools/caffe train -solver examples/hdf5_classification/solver.prototxt

 7.使用非线性模型进行优化,用solver2.prototxt设置参数,train_val2.prototxt配置模型。(占坑)

 1 !cd .. && ./build/tools/caffe train -solver examples/hdf5_classification/solver2.prototxt 

总结:467步骤我的计算结果和历程中的结果有一些差距,7步骤最高,只能做到0.73左右。原因待思考。

posted @ 2015-02-23 02:54  法师漂流  阅读(2618)  评论(0编辑  收藏  举报