【代码随想录笔记】 1.1 算法性能分析 -- 时间复杂度
究竟什么是时间复杂度
时间复杂度是一个函数,它定性描述该算法的运行时间。
那么该如何估计程序运行时间呢,通常会估算算法的操作单元数量来代表程序消耗的时间,这里默认CPU的每个单元运行消耗的时间都是相同的。
假设算法的问题规模为n,那么操作单元数量便用函数f(n)来表示,随着数据规模n的增大,算法执行时间的增长率和f(n)的增长率相同,这称作为算法的渐近时间复杂度,简称时间复杂度,记为 O(f(n))。
什么是大O
算法导论给出的解释:大O用来表示上界的,当用它作为算法的最坏情况运行时间的上界,就是对任意数据输入的运行时间的上界。
但是,面试中说到算法的时间复杂度是多少指的都是一般情况。
比如,快速排序的时间复杂度是O(nlogn),但是当数据已经有序情况下,快速排序的时间复杂度是O(n^2) 的,所以严格从大O的定义来讲,快速排序的时间复杂度应该是O(n^2)。
但是我们依然说快速排序是O(nlogn)的时间复杂度,这个就是业内的一个默认规定,这里说的O代表的就是一般情况,而不是严格的上界。如图所示:
所以,如果面试官和我们深入探讨一个算法的实现以及性能的时候,就要时刻想着数据用例的不一样,时间复杂度也是不同的。
此外,在计算时间复杂度的时候要忽略常数项系数呢,也就说O(100n) 就是O(n)的时间复杂度,O(5n^2) 就是O(n^2)的时间复杂度,而且要默认O(n) 优于O(n^2) 呢 ?因为大O是数据量级突破一个点且数据量级非常大的情况下所表现出的时间复杂度,这个数据量也就是常数项系数已经不起决定性作用的数据量。
所以我们说的时间复杂度都是省略常数项系数的,是因为一般情况下都是默认数据规模足够的大,基于这样的事实,给出的算法时间复杂的的一个排行如下所示:
O(1)常数阶 < O(logn)对数阶 < O(n)线性阶 < O(n^2)平方阶 < O(n^3)立方阶 < O(2^n)指数阶
O(logn)中的log是以什么为底?
平时说这个算法的时间复杂度是logn的,其既可以是log以2为底n的对数,也可以是以10为底n的对数,也可以是以20为底n的对数,但我们统一说 logn,也就是忽略底数的描述。
为什么可以这么做呢?如下图所示:
时间复杂度计算的例子
通过这道面试题目,来分析一下时间复杂度。题目描述:找出n个字符串中相同的两个字符串(假设这里只有两个相同的字符串)。
如果是暴力枚举的话,时间复杂度是多少呢,是O(n^2)么?
这里一些同学会忽略了字符串比较的时间消耗,这里并不像int 型数字做比较那么简单,除了n^2 次的遍历次数外,字符串比较依然要消耗m次操作(m也就是字母串的长度),所以时间复杂度是O(m × n × n)。
接下来再想一下其他解题思路。
先排对n个字符串按字典序来排序,排序后n个字符串就是有序的,意味着两个相同的字符串就是挨在一起,然后在遍历一遍n个字符串,这样就找到两个相同的字符串了。
那看看这种算法的时间复杂度,快速排序时间复杂度为O(nlogn),依然要考虑字符串的长度是m,那么快速排序每次的比较都要有m次的字符比较的操作,就是O(m × n × log n) 。(因为在排序过程中需要进行字符比较确定顺序,所以需要乘以m)
之后还要遍历一遍这n个字符串找出两个相同的字符串,别忘了遍历的时候依然要比较字符串,所以总共的时间复杂度是 O(m × n × logn + n × m)。
我们对O(m × n × log n + n × m) 进行简化操作,把m × n提取出来变成 O(m × n × (logn + 1)),再省略常数项最后的时间复杂度是 O(m × n × log n)。
最后很明显O(m × n × logn) 要优于O(m × n × n)!
所以先把字符串集合排序再遍历一遍找到两个相同字符串的方法要比直接暴力枚举的方式更快。
这就是我们通过分析两种算法的时间复杂度得来的。
当然这不是这道题目的最优解,我仅仅是用这道题目来讲解一下时间复杂度。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具