一些dp问题合集
518. Coin Change 2
解法见 👉 518. Coin Change 2
322. Coin Change
解法见 👉 322. Coin Change
377. Combination Sum IV
问题描述:
Given an integer array with all positive numbers and no duplicates,
find the number of possible combinations that add up to a positive integer target.
例子:
nums = [1, 2, 3]
target = 4
The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
Note that different sequences are counted as different combinations.
Therefore the output is 7.
代码:
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<unsigned int> dp(target + 1, 0);
dp[0] = 1;
sort(nums.begin(), nums.end());
for (int i = 1; i <= target; ++i) {
for (auto a : nums) {
if (i < a) break;
dp[i] += dp[i - a];
}
}
return dp.back();
}
};
279. Perfect Squares
问题描述:
Given an integer n, return the least number of perfect square numbers that sum to n.
A perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself.
For example, 1, 4, 9, and 16 are perfect squares while 3 and 11 are not.
例子:
Example 1:
Input: n = 12
Output: 3
Explanation: 12 = 4 + 4 + 4.
Example 2:
Input: n = 13
Output: 2
Explanation: 13 = 4 + 9.
代码:
class Solution {
public:
int numSquares(int n) {
vector<int> square_nums;
for (int i = floor(sqrt(n)); i >= 1; i--) square_nums.push_back(i * i);
vector<int> dp(n + 1, n + 1);
dp[0] = 0;
for (int i = 1; i <= n; i++) {
for (auto e : square_nums) {
if (e <= i) dp[i] = min(dp[i], dp[i - e] + 1);
}
}
return dp[n];
}
};
只有0和1的世界是简单的