算法导论12.1-3习题解答(非递归中序遍历)

CLRS 12.1-3:

给出一个非递归的中序树遍历算法。(提示:有两种方法,在较容易的方法中,可以采用栈作为辅助数据结构;在较为复杂的方法中,不采用栈结构,但假设可以测试两个指针是否相等。)

算法思想:

1.采用栈的话,先寻找最左边的节点,把经过的节点都存入栈中,第一个被弹出来的为最左节点,那么访问其右子树,对右子树也像前面一样遍历,整个流程跟递归一样。

2.不采用栈的话,先是访问最左节点,然后访问其右子树,然后回溯到最左节点的父节点,不断重复这个过程,思路还是一样。这里参考了重剑无锋的http://blog.csdn.net/kofsky/archive/2008/09/05/2886453.aspx

构造的树的树如下:

#include <iostream>
#include
<time.h>
usingnamespace std;
class Node
{
public:
  int data;
  Node
* left;
  Node
* right;
  Node
* parent;
  bool visited;
  //Node(){}
  Node(int d);
  Node(
int d, Node* l, Node* r);
};
class BinaryTree
{
public:
  Node
* root;
  BinaryTree(Node
* r);
  //递归实现中序遍历
  void recurse_in_order_visit(Node* root);
  //非递归用栈实现中序遍历
  void non_recurse_using_stack_in_order_visit(Node* root);
  //非递归且不用栈实现中序遍历
  void non_recurse_non_stack_in_order_visit(Node* root);
  enum TRAVESAL_STATE
  {
    LEFT_NOT_TRAVERS,
//左子树未遍历
    LEFT_TRAVERSED,//左子树已遍历(包括左子树为空)
    RIGHT_TRAVERSED//右子树已遍历(右子树为空)
  };
};
int main()
{
  Node
* node1 =new Node(1, NULL, NULL);
  Node
* node2 =new Node(2, node1, NULL);
  Node
* node3 =new Node(4, NULL, NULL);
  Node
* node4 =new Node(3, node2, node3);
  Node
* node5 =new Node(7, NULL, NULL);
  Node
* node6 =new Node(6, NULL, node5);
  Node
* node7 =new Node(9, NULL, NULL);
  Node
* node8 =new Node(8, node6, node7);
  Node
* root =new Node(5, node4, node8);
  BinaryTree
* binary_tree =new BinaryTree(root);
  cout
<<"递归中序遍历的结果:"<<endl;
  binary_tree
->recurse_in_order_visit(binary_tree->root);
  cout
<<endl;
  cout
<<"非递归用栈中序遍历的结果:"<<endl;
  binary_tree
->non_recurse_using_stack_in_order_visit(binary_tree->root);
  cout
<<endl;
  //若使用非递归且不用栈来进行中序遍历,则需要parent指针作为辅助
  node1->parent = node2;
  node2
->parent = node4;
  node3
->parent = node4;
  node5
->parent = node6;
  node6
->parent = node8;
  node7
->parent = node8;
  node4
->parent = root;
  node8
->parent = root;
  cout
<<"非递归且不用栈中序遍历的结果:"<<endl;
  binary_tree
->non_recurse_non_stack_in_order_visit(binary_tree->root);
  cout
<<endl;
  return0;
}

Node::Node(
int d)
{
  data
= d;
  parent
= left = right = NULL;
  visited
=false;
}

Node::Node(
int d, Node* l, Node* r)
{
  data
= d;
  left
= l;
  right
= r;
  parent
= NULL;
  visited
=false;
}

BinaryTree::BinaryTree(Node
* r)
{
  root
= r;
}

//递归实现中序遍历
void BinaryTree::recurse_in_order_visit(Node* root)
{
  if(root != NULL)
  {
    recurse_in_order_visit(root
->left);
    printf(
"%d\t", root->data);
    recurse_in_order_visit(root
->right);
  }
}

//非递归用栈实现中序遍历
void BinaryTree::non_recurse_using_stack_in_order_visit(Node* root)
{
  Node
* stack[9];
  int top =-1;
  while(root != NULL || top >-1)
  {
    while(root != NULL)
    {
      stack[
++top] = root;
      root
= root->left;
    }
    if(top >-1)
    {
      root
= stack[top--];
      printf(
"%d\t", root->data);
      root
= root->right;
    }
  }
}

//非递归且不用栈实现中序遍历
void BinaryTree::non_recurse_non_stack_in_order_visit(Node* root)
{
  while ( root != NULL )
  {
    while ( root->left != NULL &&!root->left->visited )
    {
      //一路向左
      root = root->left;
    }
    if ( !root->visited )
    {
      cout
<<root->data<<"\t";
      root
->visited=true;
    }
    if ( root->right != NULL &&!root->right->visited )
    {
      //右子树
      root = root->right;
    }
    else
    {
      //回溯至parent节点
      root = root->parent;
    }
  }
}

 

posted on 2011-04-20 20:43  NULL00  阅读(5976)  评论(3编辑  收藏  举报

导航