爬虫之爬汽车之家
一、话说爬虫
先说说爬虫,爬虫常被用来抓取特定网站网页的HTML数据,定位在后端数据的获取,而对于网站而言,爬虫给网站带来流量的同时,一些设计不好的爬虫由于爬得太猛,导致给网站来带很大的负担,当然再加上一些网站并不希望被爬取,所以就出现了许许多多的反爬技术。
二、安装模块
1. requests
模块安装方法:
pip3 install requests
2、beautisoup模块
软件安装方法:
pip3 install beautifulsoup4 或 pip3 install bs4
3、lxml模块
#必须先安装whell依赖 (请换成国内pip源进行安装,否则容易报错)
pip install wheel
#在cmd中,输入python进入python。
然后输入import pip;print(pip.pep425tags.get_supported()),界面上输出当前python的版本信息,如图。
再跟据上面查到的版本信息,找到下面对应的版本进行安装。
#下载地址:https://pypi.python.org/pypi/lxml/3.7.3 (网站打不开,请FQ,就可以打开)
#python3.5就选择cp3m版本 lxml-3.7.3-cp35-cp35m-win32.whl
#安装方法
pip3 install lxml-3.6.4-cp35-cp35m-win_amd64.whl
进入python3,输入import lxml,未报错,即表示安装成功。
三、requests模块用法
Python标准库中提供了:urllib、urllib2、httplib等模块以供Http请求,但是,它的 API 太渣了。它是为另一个时代、另一个互联网所创建的。它需要巨量的工作,甚至包括各种方法覆盖,来完成最简单的任务。
Requests 是使用 Apache2 Licensed 许可证的 基于Python开发的HTTP 库,其在Python内置模块的基础上进行了高度的封装,从而使得Pythoner进行网络请求时,变得美好了许多,使用Requests可以轻而易举的完成浏览器可有的任何操作。
1、GET请求
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
# 1、无参数实例 import requests ret = requests.get( 'https://github.com/timeline.json' ) print ret.url print ret.text # 2、有参数实例 import requests payload = { 'key1' : 'value1' , 'key2' : 'value2' } ret = requests.get( "http://httpbin.org/get" , params = payload) print ret.url print ret.text |
2、POST请求
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
# 1、基本POST实例 import requests payload = { 'key1' : 'value1' , 'key2' : 'value2' } ret = requests.post( "http://httpbin.org/post" , data = payload) print ret.text # 2、发送请求头和数据实例 import requests import json url = 'https://api.github.com/some/endpoint' payload = { 'some' : 'data' } headers = { 'content-type' : 'application/json' } ret = requests.post(url, data = json.dumps(payload), headers = headers) print ret.text print ret.cookies |
3、requests属性
response = requests.get('URL')
response.text # 获取文本内容
response.content # 获取文本内容,字节
response.encoding # 设置返回结果的编码
response.aparent_encoding # 获取网站原始的编码
response.status_code # 状态码
response.cookies.get_dict() # cookies
4、关系和方法
- 方法关系
requests.get(url, params
=
None
,
*
*
kwargs)
requests.post(url, data
=
None
, json
=
None
,
*
*
kwargs)
requests.put(url, data
=
None
,
*
*
kwargs)
requests.head(url,
*
*
kwargs)
requests.delete(url,
*
*
kwargs)
requests.patch(url, data
=
None
,
*
*
kwargs)
requests.options(url,
*
*
kwargs)
- 在此方法的基础上构建
requests.request(method, url,
*
*
kwargs)
- method: 提交方式
- url: 提交地址
- params: 在URL中传递的参数,GET
requests.request(
method='GET',
url= 'http://www.nulige.com',
params = {'k1':'v1','k2':'v2'}
)
# http://www.nulige.com?k1=v1&k2=v2
- data: 在请求体里传递的数据
requests.request(
method='POST',
url= 'http://www.nulige.com',
params = {'k1':'v1','k2':'v2'},
data = {'use':'alex','pwd': '123','x':[11,2,3}
)
请求头:
content-type: application/url-form-encod.....
请求体:
use=alex&pwd=123
- json 在请求体里传递的数据
requests.request(
method='POST',
url= 'http://www.oldboyedu.com',
params = {'k1':'v1','k2':'v2'},
json = {'use':'alex','pwd': '123'}
)
请求头:
content-type: application/json
请求体:
"{'use':'alex','pwd': '123'}"
PS: 字典中嵌套字典时
- headers 请求头
requests.request(
method='POST',
url= 'http://www.oldboyedu.com',
params = {'k1':'v1','k2':'v2'},
json = {'use':'alex','pwd': '123'},
headers={
'Referer': 'http://dig.chouti.com/',
'User-Agent': "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36"
}
)
- cookies Cookies
- files 上传文件
- auth 基本认证(headers中加入加密的用户名和密码)
- timeout 请求和响应的超时时间
- allow_redirects 是否允许重定向
- proxies 代理 (nginx反向代理模块)
- verify 是否忽略证书
- cert 证书文件
- stream 流的方式迭代下载
- session: 用于保存客户端历史访问信息
参数用法示例:
def param_method_url(): # requests.request(method='get', url='http://127.0.0.1:8000/test/') # requests.request(method='post', url='http://127.0.0.1:8000/test/') pass def param_param(): # - 可以是字典 # - 可以是字符串 # - 可以是字节(ascii编码以内) # requests.request(method='get', # url='http://127.0.0.1:8000/test/', # params={'k1': 'v1', 'k2': '水电费'}) # requests.request(method='get', # url='http://127.0.0.1:8000/test/', # params="k1=v1&k2=水电费&k3=v3&k3=vv3") # requests.request(method='get', # url='http://127.0.0.1:8000/test/', # params=bytes("k1=v1&k2=k2&k3=v3&k3=vv3", encoding='utf8')) # 错误 # requests.request(method='get', # url='http://127.0.0.1:8000/test/', # params=bytes("k1=v1&k2=水电费&k3=v3&k3=vv3", encoding='utf8')) pass def param_data(): # 可以是字典 # 可以是字符串 # 可以是字节 # 可以是文件对象 # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # data={'k1': 'v1', 'k2': '水电费'}) # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # data="k1=v1; k2=v2; k3=v3; k3=v4" # ) # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # data="k1=v1;k2=v2;k3=v3;k3=v4", # headers={'Content-Type': 'application/x-www-form-urlencoded'} # ) # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # data=open('data_file.py', mode='r', encoding='utf-8'), # 文件内容是:k1=v1;k2=v2;k3=v3;k3=v4 # headers={'Content-Type': 'application/x-www-form-urlencoded'} # ) pass def param_json(): # 将json中对应的数据进行序列化成一个字符串,json.dumps(...) # 然后发送到服务器端的body中,并且Content-Type是 {'Content-Type': 'application/json'} requests.request(method='POST', url='http://127.0.0.1:8000/test/', json={'k1': 'v1', 'k2': '水电费'}) def param_headers(): # 发送请求头到服务器端 requests.request(method='POST', url='http://127.0.0.1:8000/test/', json={'k1': 'v1', 'k2': '水电费'}, headers={'Content-Type': 'application/x-www-form-urlencoded'} ) def param_cookies(): # 发送Cookie到服务器端 requests.request(method='POST', url='http://127.0.0.1:8000/test/', data={'k1': 'v1', 'k2': 'v2'}, cookies={'cook1': 'value1'}, ) # 也可以使用CookieJar(字典形式就是在此基础上封装) from http.cookiejar import CookieJar from http.cookiejar import Cookie obj = CookieJar() obj.set_cookie(Cookie(version=0, name='c1', value='v1', port=None, domain='', path='/', secure=False, expires=None, discard=True, comment=None, comment_url=None, rest={'HttpOnly': None}, rfc2109=False, port_specified=False, domain_specified=False, domain_initial_dot=False, path_specified=False) ) requests.request(method='POST', url='http://127.0.0.1:8000/test/', data={'k1': 'v1', 'k2': 'v2'}, cookies=obj) def param_files(): # 发送文件 # file_dict = { # 'f1': open('readme', 'rb') # } # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # files=file_dict) # 发送文件,定制文件名 # file_dict = { # 'f1': ('test.txt', open('readme', 'rb')) # } # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # files=file_dict) # 发送文件,定制文件名 # file_dict = { # 'f1': ('test.txt', "hahsfaksfa9kasdjflaksdjf") # } # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # files=file_dict) # 发送文件,定制文件名 # file_dict = { # 'f1': ('test.txt', "hahsfaksfa9kasdjflaksdjf", 'application/text', {'k1': '0'}) # } # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # files=file_dict) pass def param_auth(): from requests.auth import HTTPBasicAuth, HTTPDigestAuth ret = requests.get('https://api.github.com/user', auth=HTTPBasicAuth('wupeiqi', 'sdfasdfasdf')) print(ret.text) # ret = requests.get('http://192.168.1.1', # auth=HTTPBasicAuth('admin', 'admin')) # ret.encoding = 'gbk' # print(ret.text) # ret = requests.get('http://httpbin.org/digest-auth/auth/user/pass', auth=HTTPDigestAuth('user', 'pass')) # print(ret) # def param_timeout(): # ret = requests.get('http://google.com/', timeout=1) # print(ret) # ret = requests.get('http://google.com/', timeout=(5, 1)) # print(ret) pass def param_allow_redirects(): ret = requests.get('http://127.0.0.1:8000/test/', allow_redirects=False) print(ret.text) def param_proxies(): # proxies = { # "http": "61.172.249.96:80", # "https": "http://61.185.219.126:3128", # } # proxies = {'http://10.20.1.128': 'http://10.10.1.10:5323'} # ret = requests.get("http://www.proxy360.cn/Proxy", proxies=proxies) # print(ret.headers) # from requests.auth import HTTPProxyAuth # # proxyDict = { # 'http': '77.75.105.165', # 'https': '77.75.105.165' # } # auth = HTTPProxyAuth('username', 'mypassword') # # r = requests.get("http://www.google.com", proxies=proxyDict, auth=auth) # print(r.text) pass def param_stream(): ret = requests.get('http://127.0.0.1:8000/test/', stream=True) print(ret.content) ret.close() # from contextlib import closing # with closing(requests.get('http://httpbin.org/get', stream=True)) as r: # # 在此处理响应。 # for i in r.iter_content(): # print(i) def requests_session(): import requests session = requests.Session() ### 1、首先登陆任何页面,获取cookie i1 = session.get(url="http://dig.chouti.com/help/service") ### 2、用户登陆,携带上一次的cookie,后台对cookie中的 gpsd 进行授权 i2 = session.post( url="http://dig.chouti.com/login", data={ 'phone': "8615131255089", 'password': "xxxxxx", 'oneMonth': "" } ) i3 = session.post( url="http://dig.chouti.com/link/vote?linksId=8589623", ) print(i3.text)
参考:http://cn.python-requests.org/zh_CN/latest/user/quickstart.html#id4
四、BeautifulSoup
该模块用于接收一个HTML或XML字符串,然后将其进行格式化,之后遍可以使用他提供的方法进行快速查找指定元素,从而使得在HTML或XML中查找指定元素变得简单。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
from bs4 import BeautifulSoup html_doc = """ <html><head><title>The Dormouse's story</title></head> <body> asdf <div class="title"> <b>The Dormouse's story总共</b> <h1>f</h1> </div> <div class="story">Once upon a time there were three little sisters; and their names were <a class="sister0" id="link1">Els<span>f</span>ie</a>, <a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and <a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>; and they lived at the bottom of a well.</div> ad<br/>sf <p class="story">...</p> </body> </html> """ soup = BeautifulSoup(html_doc, features = "lxml" ) # 找到第一个a标签 tag1 = soup.find(name = 'a' ) # 找到所有的a标签 tag2 = soup.find_all(name = 'a' ) # 找到id=link2的标签 tag3 = soup.select( '#link2' ) |
使用示例:
1
2
3
4
5
6
7
8
9
10
11
|
from bs4 import BeautifulSoup html_doc = """ <html><head><title>The Dormouse's story</title></head> <body> ... </body> </html> """ soup = BeautifulSoup(html_doc, features = "lxml" ) |
1. name,标签名称
1
2
3
4
5
|
# tag = soup.find('a') # name = tag.name # 获取 # print(name) # tag.name = 'span' # 设置 # print(soup) |
2. attr,标签属性
1
2
3
4
5
6
|
# tag = soup.find('a') # attrs = tag.attrs # 获取 # print(attrs) # tag.attrs = {'ik':123} # 设置 # tag.attrs['id'] = 'iiiii' # 设置 # print(soup) |
3. children,所有子标签
1
2
|
# body = soup.find('body') # v = body.children |
4. children,所有子子孙孙标签
1
2
|
# body = soup.find('body') # v = body.descendants |
5. clear,将标签的所有子标签全部清空(保留标签名)
1
2
3
|
# tag = soup.find('body') # tag.clear() # print(soup) |
6. decompose,递归的删除所有的标签
1
2
3
|
# body = soup.find('body') # body.decompose() # print(soup) |
7. extract,递归的删除所有的标签,并获取删除的标签
1
2
3
|
# body = soup.find('body') # v = body.extract() # print(soup) |
8. decode,转换为字符串(含当前标签);decode_contents(不含当前标签)
1
2
3
4
|
# body = soup.find('body') # v = body.decode() # v = body.decode_contents() # print(v) |
9. encode,转换为字节(含当前标签);encode_contents(不含当前标签)
1
2
3
4
|
# body = soup.find('body') # v = body.encode() # v = body.encode_contents() # print(v) |
10. find,获取匹配的第一个标签
1
2
3
4
5
|
# tag = soup.find('a') # print(tag) # tag = soup.find(name='a', attrs={'class': 'sister'}, recursive=True, text='Lacie') # tag = soup.find(name='a', class_='sister', recursive=True, text='Lacie') # print(tag) |
11. find_all,获取匹配的所有标签
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
# tags = soup.find_all('a') # print(tags) # tags = soup.find_all('a',limit=1) # print(tags) # tags = soup.find_all(name='a', attrs={'class': 'sister'}, recursive=True, text='Lacie') # # tags = soup.find(name='a', class_='sister', recursive=True, text='Lacie') # print(tags) # ####### 列表 ####### # v = soup.find_all(name=['a','div']) # print(v) # v = soup.find_all(class_=['sister0', 'sister']) # print(v) # v = soup.find_all(text=['Tillie']) # print(v, type(v[0])) # v = soup.find_all(id=['link1','link2']) # print(v) # v = soup.find_all(href=['link1','link2']) # print(v) # ####### 正则 ####### import re # rep = re.compile('p') # rep = re.compile('^p') # v = soup.find_all(name=rep) # print(v) # rep = re.compile('sister.*') # v = soup.find_all(class_=rep) # print(v) # rep = re.compile('http://www.oldboy.com/static/.*') # v = soup.find_all(href=rep) # print(v) # ####### 方法筛选 ####### # def func(tag): # return tag.has_attr('class') and tag.has_attr('id') # v = soup.find_all(name=func) # print(v) # ## get,获取标签属性 # tag = soup.find('a') # v = tag.get('id') # print(v) |
12. has_attr,检查标签是否具有该属性
1
2
3
|
# tag = soup.find('a') # v = tag.has_attr('id') # print(v) |
13. get_text,获取标签内部文本内容
1
2
3
|
# tag = soup.find('a') # v = tag.get_text # print(v) |
14. index,检查标签在某标签中的索引位置
1
2
3
4
5
6
7
|
# tag = soup.find('body') # v = tag.index(tag.find('div')) # print(v) # tag = soup.find('body') # for i,v in enumerate(tag): # print(i,v) |
15. is_empty_element,是否是空标签(是否可以是空)或者自闭合标签,
判断是否是如下标签:'br' , 'hr', 'input', 'img', 'meta','spacer', 'link', 'frame', 'base'
1
2
3
|
# tag = soup.find('br') # v = tag.is_empty_element # print(v) |
16. 当前的关联标签
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
# soup.next # soup.next_element # soup.next_elements # soup.next_sibling # soup.next_siblings # # tag.previous # tag.previous_element # tag.previous_elements # tag.previous_sibling # tag.previous_siblings # # tag.parent # tag.parents |
17. 查找某标签的关联标签
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
# tag.find_next(...) # tag.find_all_next(...) # tag.find_next_sibling(...) # tag.find_next_siblings(...) # tag.find_previous(...) # tag.find_all_previous(...) # tag.find_previous_sibling(...) # tag.find_previous_siblings(...) # tag.find_parent(...) # tag.find_parents(...) # 参数同find_all |
18. select,select_one, CSS选择器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
soup.select( "title" ) soup.select( "p nth-of-type(3)" ) soup.select( "body a" ) soup.select( "html head title" ) tag = soup.select( "span,a" ) soup.select( "head > title" ) soup.select( "p > a" ) soup.select( "p > a:nth-of-type(2)" ) soup.select( "p > #link1" ) soup.select( "body > a" ) soup.select( "#link1 ~ .sister" ) soup.select( "#link1 + .sister" ) soup.select( ".sister" ) soup.select( "[class~=sister]" ) soup.select( "#link1" ) soup.select( "a#link2" ) soup.select( 'a[href]' ) soup.select( 'a[href="http://example.com/elsie"]' ) soup.select( 'a[href^="http://example.com/"]' ) soup.select( 'a[href$="tillie"]' ) soup.select( 'a[href*=".com/el"]' ) from bs4.element import Tag def default_candidate_generator(tag): for child in tag.descendants: if not isinstance (child, Tag): continue if not child.has_attr( 'href' ): continue yield child tags = soup.find( 'body' ).select( "a" , _candidate_generator = default_candidate_generator) print ( type (tags), tags) from bs4.element import Tag def default_candidate_generator(tag): for child in tag.descendants: if not isinstance (child, Tag): continue if not child.has_attr( 'href' ): continue yield child tags = soup.find( 'body' ).select( "a" , _candidate_generator = default_candidate_generator, limit = 1 ) print ( type (tags), tags) |
19. 标签的内容
1
2
3
4
5
6
7
8
9
10
11
12
13
|
# tag = soup.find('span') # print(tag.string) # 获取 # tag.string = 'new content' # 设置 # print(soup) # tag = soup.find('body') # print(tag.string) # tag.string = 'xxx' # print(soup) # tag = soup.find('body') # v = tag.stripped_strings # 递归内部获取所有标签的文本 # print(v) |
20.append在当前标签内部追加一个标签
1
2
3
4
5
6
7
8
9
10
|
# tag = soup.find('body') # tag.append(soup.find('a')) # print(soup) # # from bs4.element import Tag # obj = Tag(name='i',attrs={'id': 'it'}) # obj.string = '我是一个新来的' # tag = soup.find('body') # tag.append(obj) # print(soup) |
21.insert在当前标签内部指定位置插入一个标签
1
2
3
4
5
6
|
# from bs4.element import Tag # obj = Tag(name='i', attrs={'id': 'it'}) # obj.string = '我是一个新来的' # tag = soup.find('body') # tag.insert(2, obj) # print(soup) |
22. insert_after,insert_before 在当前标签后面或前面插入
1
2
3
4
5
6
7
|
# from bs4.element import Tag # obj = Tag(name='i', attrs={'id': 'it'}) # obj.string = '我是一个新来的' # tag = soup.find('body') # # tag.insert_before(obj) # tag.insert_after(obj) # print(soup) |
23. replace_with 在当前标签替换为指定标签
1
2
3
4
5
6
|
# from bs4.element import Tag # obj = Tag(name='i', attrs={'id': 'it'}) # obj.string = '我是一个新来的' # tag = soup.find('div') # tag.replace_with(obj) # print(soup) |
24. 创建标签之间的关系
1
2
3
4
|
# tag = soup.find('div') # a = soup.find('a') # tag.setup(previous_sibling=a) # print(tag.previous_sibling) |
25. wrap,将指定标签把当前标签包裹起来
1
2
3
4
5
6
7
8
9
10
11
|
# from bs4.element import Tag # obj1 = Tag(name='div', attrs={'id': 'it'}) # obj1.string = '我是一个新来的' # # tag = soup.find('a') # v = tag.wrap(obj1) # print(soup) # tag = soup.find('a') # v = tag.wrap(soup.find('p')) # print(soup) |
26. unwrap,去掉当前标签,将保留其包裹的标签
1
2
3
|
# tag = soup.find('a') # v = tag.unwrap() # print(soup) |
更多参数官方:http://beautifulsoup.readthedocs.io/zh_CN/v4.4.0/
五、示例
把下面代码,加入到代码中,可以下载网站源码到本地分析
with open('weixin.html','wb') as f:
f.write(wx_login_page.content)
1、爬取汽车之家新闻频道页面里面的图片
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author: nulige
import requests
from bs4 import BeautifulSoup
response = requests.get(
url='http://www.autohome.com.cn/news/'
)
#解决爬虫乱码问题
response.encoding = response.apparent_encoding
# 生成Soup对象,
soup = BeautifulSoup(response.text, features='html.parser')
# find查找第一个符合条件的对象
target = soup.find(id='auto-channel-lazyload-article')
#find_all查找所有符合的对象,查找出来的值在列表中
li_list = target.find_all('li')
#循环拿到具体每个对象
for i in li_list:
a = i.find('a')
if a:
print(a.attrs.get('href')) # # .attrs查找到属性
txt = a.find('h3').text # 是对象
img_url = a.find('img').attrs.get('src')
print(img_url)
# 再发一个请求
img_response = requests.get(url=img_url)
import uuid
file_name = str(uuid.uuid4()) + '.jpg'
with open(file_name,'wb') as f:
f.write(img_response.content)
备注:
# 找到第一个a标签
tag1
=
soup.find(name
=
'a'
)
# 找到所有的a标签
tag2
=
soup.find_all(name
=
'a'
)
# 找到id=link2的标签
tag3
=
soup.select(
'#link2'
)
2、自动登陆抽屉网
#!/usr/bin/env python # -*- coding: utf8 -*- # __Author: "Skiler Hao" # date: 2017/5/10 11:06 import requests from bs4 import BeautifulSoup # 第一次请求 first_request_response = requests.get( url = 'http://dig.chouti.com/', ) # 获取第一次登录获取的cookie内容 firstget_cookie_dict = first_request_response.cookies.get_dict() # 登录POST请求 post_dict = { 'phone': '8618811*****', #86+手机号码 'password': '******', #密码 'oneMonth': 1 } # 发送请求,携带cookie和数据 login_response = requests.post( url = 'http://dig.chouti.com/login', data = post_dict, cookies= firstget_cookie_dict ) # 点赞请求 dianzan_response = requests.post( url = 'http://dig.chouti.com/link/vote?linksId=11832246', cookies= firstget_cookie_dict ) print(dianzan_response.text) # 取消点赞 cancel_dianzan_response = requests.post( url = 'http://dig.chouti.com/vote/cancel/vote.do', cookies= firstget_cookie_dict, data={'linksId':11832246} ) print(cancel_dianzan_response.text) # 获取个人信息 get_person_info_resonse = requests.get( url = 'http://dig.chouti.com/profile', cookies= firstget_cookie_dict, ) # 按照某种encoding方式编码 get_person_info_resonse.encoding = get_person_info_resonse.apparent_encoding # 将其内容放入BS中进行解析 person_info_site = BeautifulSoup(get_person_info_resonse.text,features='html.parser') # 找到之后可以做任何处理,获取配置中的nickname nickname_tag = person_info_site.find(id='nick') nickname = person_info_site.find(id='nick').attrs.get('value') print('昵称:',nickname) # 更新自己在抽屉上的个人信息 personal_info = { 'jid': 'cdu_49017916793', 'nick': '努力哥', 'imgUrl': 'http://img2.chouti.com/CHOUTI_90A38B32473A49B7B26A49F46B34268C_W585H359=C60x60.png', # http://img2.chouti.com/CHOUTI_BAE7F736FE7B48E49D1CEE459020F3B0_W390H390=48x48.jpg 'sex': True, 'proveName': '北京', 'cityName': '澳门', 'sign': '黑hi呃呃哈发到付' } update_person_info_resonse = requests.post( url = 'http://dig.chouti.com/profile/update', cookies= firstget_cookie_dict, data=personal_info ) print(update_person_info_resonse.text) #########################Session方式登录抽屉######################### session = requests.Session() # 先登陆一下抽屉网 i1 = session.get( url='http://dig.chouti.com/' ) # 模拟抽屉登录 login_post_dict = { 'phone': '86188116*****', #86+手机号码 'password': '******', #密码 'oneMonth': 1 } i2 = session.post( url='http://dig.chouti.com/login', data=login_post_dict, )
3、自动登陆GitHub
#!/usr/bin/env python
# -*- coding: utf8 -*-
# date: 2017/5/10 16:32
import requests
from bs4 import BeautifulSoup
# GitHub是基于authenticity_token,具有预防csrf_token的功能
# 首先访问页面,获取页面上的authenticity_token
i1 = requests.get('https://github.com/login')
# print(i1.content)
login_page_res = BeautifulSoup(i1.content,features='lxml')
authenticity_token = login_page_res.find(name='input',attrs={'name':'authenticity_token'}).attrs.get('value')
cookies1 = i1.cookies.get_dict()
# print(authenticity_token)
form_data = {
'commit': 'Sign in',
'utf8': '✓',
'authenticity_token': authenticity_token,
'login': '*****',
'password': '******',
}
# 将数据封装在post请求中进行登录,而且要加上cookie
login_res = requests.post(
url='https://github.com/session',
data=form_data,
cookies=cookies1
)
# print(login_res.text)
# 拿到页面中的自己的项目列表
login_page_res = BeautifulSoup(login_res.content,features='lxml')
list_info = login_page_res.select("span .repo")
for i in list_info:
print(i.text)
cookies1 = i1.cookies.get_dict()
4、自动登录cnblog
博客园站用了一个rsa算法的加密模块,所以安装加密模块。才能验证登录。
pip3 install rsa
代码:
#!/usr/bin/env python
# -*- coding: utf8 -*-
# date: 2017/5/11 10:51
import re
import json
import base64
import rsa
import requests
from bs4 import BeautifulSoup
# 负责模仿前端js模块对账号和密码加密
def js_enrypt(text):
# 先从博客园拿到public key
public_key = 'MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCp0wHYbg/NOPO3nzMD3dndwS0MccuMeXCHgVlGOoYyFwLdS24Im2e7YyhB0wrUsyYf0/nhzCzBK8ZC9eCWqd0aHbdgOQT6CuFQBMjbyGYvlVYU2ZP7kG9Ft6YV6oc9ambuO7nPZh+bvXH0zDKfi02prknrScAKC0XhadTHT3Al0QIDAQAB'
# 将拿到的一串字符,转换成64进制
der = base64.standard_b64decode(public_key)
# 再将其转换成数字,作为公钥加载
pk = rsa.PublicKey.load_pkcs1_openssl_der(der)
# 运用公钥对传进来的文字进行加密
v1 = rsa.encrypt(bytes(text,'utf8'),pk)
# 对加密后的内容进行解码
value = base64.encodebytes(v1).replace(b'\n',b'')
value = value.decode('utf8')
# 将其返回
return value
session = requests.Session()
# 写个错误的用户名和密码,提交一下。就找到提交数据
post_data = {
'input1': js_enrypt('******'),
'input2': js_enrypt('******'),
'remember': True
}
# 发送一次请求,获取ajax发送post时要发送的VerificationToken,需要将其放在请求头部
login_page = session.get(
url='https://passport.cnblogs.com/user/signin',
)
VerificationToken = re.compile("'VerificationToken': '(.*)'")
v = re.search(VerificationToken,login_page.text)
VerificationToken = v.group(1)
# 发送请求,注意将数据json序列化,因为Accept:application/json
login_post_res = session.post(
url='https://passport.cnblogs.com/user/signin',
data=json.dumps(post_data),
headers={
'VerificationToken': VerificationToken,
'X-Requested-With': 'XMLHttpRequest',
'Content-Type': 'application/json; charset=UTF-8'
}
)
# 登录账号设置页
setting_page = session.get(
url='https://home.cnblogs.com/set/account/',
)
soup = BeautifulSoup(setting_page.content,features='lxml')
name = soup.select_one('#loginName_display_block div').get_text().strip()
print('你的账号名为:',name)
5、自动登录知乎
#!/usr/bin/env python
# -*- coding: utf8 -*-
import requests
from bs4 import BeautifulSoup
session = requests.Session()
# 知乎会查看你的是否有用户客户端信息,没有不会让爬的
signin_page = session.get(
url='https://www.zhihu.com/#signin',
headers={
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36',
}
)
# 拿到页面的_xrf为了防止csrf攻击,post数据的时候需要提供
signin_page_tag = BeautifulSoup(signin_page.content,features='lxml')
xsrf_code = signin_page_tag.find('input',attrs={'name':'_xsrf'}).attrs.get('value')
# 从知乎服务器获取验证码照片,发送请求POST,发现需要传入以下三个参数
# r:1494416****
# type:login
# lang:cn
import time
current_time = time.time()
yanzhengma = session.get(
url='https://www.zhihu.com/captcha.gif',
params={
'r': current_time,
'type': 'login',
# 'lang': 'en' # 使用不同的语言,cn最为复杂,不加的话,最容易识别,en为立体的英文也不好识别
},
headers={
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36',
}
)
# 将从服务器收到的验证码写入文件,可以查看啦
with open('zhihu.gif', 'wb') as f:
f.write(yanzhengma.content)
captcha = input("请打开照片查看验证码:")
form_data = {
'_xsrf': xsrf_code,
'password': '********',
'captcha': captcha,
# 'captcha': '{"img_size": [200, 44], "input_points": [[40.2, 34.2], [156.2, 28.2], [138.2, 24.2]]}',
# 'captcha_type': 'cn', # 如果为中文的验证码比较复杂
'phone_num': '***********', #填手机号码登录
# 'email':"sddasd@123.com" # 邮箱登录的方式
}
login_response = session.post(
url='https://www.zhihu.com/login/phone_num', #前端会根据你的数据类型选择用邮箱或者手机号码登录
# url='https://www.zhihu.com/login/phone_num'
data=form_data,
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36',
}
)
index_page = session.get(
url='https://www.zhihu.com/',
headers={
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36',
}
)
index_page_tag = BeautifulSoup(index_page.content,features='lxml')
print(index_page_tag)
运行程序后,输入验证码。登录成功后,搜索用户名称,能找到我多个相同的用户名称,就说明登录成功。