二叉查找树实现实例(C语言)
/* search_tree.h */ #ifndef _SEARCH_TREE_H #define _SEARCH_TREE_H struct tree_node; typedef struct tree_node *position; typedef struct tree_node *search_tree; search_tree make_empty(search_tree t); position find(int x, search_tree t); position find_min(search_tree t); position find_max(search_tree t); search_tree insert_tree(int x, search_tree t); search_tree delete_tree(int x, search_tree t); int retrieve(position p); void preorder_print_search_tree(search_tree t);
void inorder_print_search_tree(search_tree t);
void postorder_print_search_tree(search_tree t);
#endif
/* search_tree.c */ #include "search_tree.h" #include <stdio.h> #include <stdlib.h> struct tree_node { int element; search_tree left; search_tree right; }; search_tree make_empty(search_tree t) { if(t != NULL) { make_empty(t->left); make_empty(t->right); free(t); } return NULL; } position find(int x, search_tree t) { if(t == NULL) { return NULL; } if(x < t->element) return find(x, t->left); else if(x > t->element) return find(x, t->right); else return t; } position find_min(search_tree t) { if(t == NULL) return NULL; else if(t->left == NULL) return t; else return find_min(t->left); } position find_max(search_tree t) { if(t == NULL) return NULL; else if(t->right == NULL) return t; else return find_max(t->right); } search_tree insert_tree(int x, search_tree t) { if(t == NULL) { /* create and return a one-node tree */ t = malloc(sizeof(struct tree_node)); if(t == NULL) { printf("out of space!!!\n"); exit(1); } else { t->element = x; t->left = NULL; t->right = NULL; } } else if(x < t->element) t->left = insert_tree(x, t->left); else if(x > t->element) t->right = insert_tree(x, t->right);; /* else x is in the tree already; we'll do nothing */ return t; /* do not forget this line */ } search_tree delete_tree(int x, search_tree t) { position tmpcell; if(t == NULL) { printf("element not found!\n"); exit(1); } else if(x < t->element) /* go left */ t->left = delete_tree(x, t->left); else if(x > t->element) /* go right */ t->right = delete_tree(x, t->right); else if(t->left && t->right) /* two children */ { /* replace with smallest in right subtree */ tmpcell = find_min(t->right); t->element = tmpcell->element; t->right = delete_tree(t->element, t->right); } else /* one or zero children */ { tmpcell = t; if(t->left == NULL) /* also handles 0 children */ t = t->right; else if(t->right == NULL) t = t->left; free(tmpcell); } return t; } int retrieve(position p) { return p->element; } void
preorder_print_search_tree(search_tree t)
{
if(t != NULL)
{
printf("%d ", t->element);
preorder_print_search_tree(t->left);
preorder_print_search_tree(t->right);
}
}
void
inorder_print_search_tree(search_tree t)
{
if(t != NULL)
{
inorder_print_search_tree(t->left);
printf("%d ", t->element);
inorder_print_search_tree(t->right);
}
}
void
postorder_print_search_tree(search_tree t)
{
if(t != NULL)
{
postorder_print_search_tree(t->left);
postorder_print_search_tree(t->right);
printf("%d ", t->element);
}
}
/* search_tree_test.c */ #include "search_tree.h" #include <stdio.h> int main(void) { search_tree t = NULL; position pmin, pmax; int min, max; t = make_empty(t); printf("insert 10 to search_tree\n"); t = insert_tree(10, t); printf("insert 4 to search_tree\n"); t = insert_tree(4, t); printf("insert 6 to search_tree\n"); t = insert_tree(6, t); printf("insert 18 to search_tree\n"); t = insert_tree(18, t); printf("insert 12 to search_tree\n"); t = insert_tree(12, t); pmin = find_min(t); pmax = find_max(t); min = retrieve(pmin); max = retrieve(pmax); printf("\npreorder traversal the search tree is :"); preorder_print_search_tree(t); printf("\ninorder traversal the search tree is :"); inorder_print_search_tree(t); printf("\npostorder traversal the search tree is :"); postorder_print_search_tree(t); printf("\nmin = %d\nmax = %d\n", min, max); }
测试结果: