MapReduce案例五:倒排索引
一、数据样例
三个文件,a.txt,b.txt,c.txt。其中每个文件中包含若干的单词。
文件a.txt内容:
I Love Hadoop
he like ZhouSiYuan
I love me
文件b.txt内容:
I Love MapReduce
he like NBA
I love Hadoop
文件c.txt内容:
I Love MapReduce
I love me
I Love Hadoop
二、需求
- 建立搜索索引,根据查找单词来查找文档。
三、分析
-
1、求出每个文件中对应的单词及其单词次数,并在其后面加上其对应的文件名。即形如:I--a.txt 2,I--b.txt 2。
-
2、最后得出单词所对应所有文件名,及其在每个文件中出现的次数。即形如:**I a.txt-->2 b.txt-->2 c.txt-->3 **。
四、代码实现
- 1、第一次Mapper,编写 OneIndexMapper 类:
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
public class OneIndexMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
Text k = new Text();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 1 获取切片名称
FileSplit inputSplit = (FileSplit) context.getInputSplit();
String name = inputSplit.getPath().getName();
// 2 获取1行
String line = value.toString();
// 3 截取
String[] words = line.split(" ");
// 4 把每个单词和切片名称关联起来
for (String word : words) {
k.set(word + "--" + name);
context.write(k, new IntWritable(1));
}
}
}
- 2、第一次Reducer,编写 OneIndexReducer 类:
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class OneIndexReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int count = 0;
// 累加和
for(IntWritable value: values){
count +=value.get();
}
// 写出
context.write(key, new IntWritable(count));
}
}
- 3、第一次Driver,编写 OneIndexDriver 类:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class OneIndexDriver {
public static void main(String[] args) throws Exception {
//data文件加下包含a.txt,b.txt,c.txt三个文件
args = new String[]{"D:\\大数据API\\data","D:\\大数据API\\data1"};
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(OneIndexDriver.class);
job.setMapperClass(OneIndexMapper.class);
job.setReducerClass(OneIndexReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
- 4、第二次Mapper,编写 TwoIndexMapper 类:
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class TwoIndexMapper extends Mapper<LongWritable, Text, Text, Text>{
Text k = new Text();
Text v = new Text();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 1 获取1行数据
String line = value.toString();
// 2用“--”切割
String[] fields = line.split("--");
k.set(fields[0]);
v.set(fields[1]);
// 3 输出数据
context.write(k, v);
}
}
- 5、第二次Mapper,编写 TwoIndexReducer类:
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class TwoIndexReducer extends Reducer<Text, Text, Text, Text> {
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
// I--a.txt 2
//I--b.txt 2
//I--c.txt 3
//变成:I c.txt-->2 b.txt-->2 a.txt-->3
StringBuilder sb = new StringBuilder();
for (Text value : values) {
sb.append(value.toString().replace("\t", "-->") + "\t");
}
context.write(key, new Text(sb.toString()));
}
}
- 6、第二次Mapper,编写 TwoIndexDriver 类:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class TwoIndexDriver {
public static void main(String[] args) throws Exception {
args = new String[]{"D:\\大数据API\\data1","D:\\大数据API\\data2"};
Configuration config = new Configuration();
Job job = Job.getInstance(config);
job.setMapperClass(TwoIndexMapper.class);
job.setReducerClass(TwoIndexReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
- 结果图
第一次MapReduce:
第二次MapReduce:
作者:落花桂
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。