探秘最小生成树&&洛谷P2126题解
我在这里就讲两种方法
Prim 和 Kruscal
Kruscal
kruscal的本质其实是 排序+并查集 ,是生成树中避圈法的推广
算法原理如下
- (1)将连通带权图G=<n,m>的各条边按从小到大的次序排列,写成E1,E2,···Em,其中E1的权最小,Em的权最大,m为边数。//这就是排序的原因
- (2)取权最小的两条边E1,E2,构成边的集合T,即T={E1,E2}。从E3起,按次序逐个将边加进集合T中去,若出现回路则将这条边排除(不加进去),按此法一直进行到Em,最后得到n-1条边的集合T={E1,E2,E3,···En-1},则T就是图G的最小生成树。//并查集
如果不会并查集的同学,可以点进去看看
并查集
其中大家可以看到,我的快速排序并没有写cmp,这是因为我用了重载运算符
可以看一看一大佬写的,简单易懂
CSDN 重载运算符
贴代码
#include<bits/stdc++.h>
using namespace std;
int n,m;
struct edge
{
int to,from,next,v;
bool operator <(const edge &n)const
{
return v<n.v;
}//重载<符号,排序时要用
}e[400000+10];
int head[2300+10],ei=0;
inline int add(int x,int y,int z)
{
ei++;
e[ei].to=y;
e[ei].next=head[x];
e[ei].v=z;
head[x]=ei;
e[ei].from=x;
}//前向星模板,萌新们不知道可以去百度一下
int f[2300+10];//爸爸数组~~~
inline int findf(int x)
{
if(f[x]==0)
{
return x;
}
f[x]=findf(f[x]);
return f[x];
}
inline int uion(int x,int y)
{
x=findf(x);
y=findf(y);
if(x!=y)
{
f[x]=y;
}
}//并查集模板
int ans=0;//答案
/*int cnt=0;*/
inline int kruscal()
{
for(int i=1;i<=m;i++)
{
int fx=findf(e[i].from);
int fy=findf(e[i].to);
if(fx==fy) continue;
ans+=e[i].v;
uion(e[i].from,e[i].to);
/*cnt++;
if(cnt==n-1)
{
break;
}
这就是这道题与P3366的模板的第一个区别
这道题强调了要重复的
所以不需要判断
*/
}
}//kruscal模板
int main()
{
cin>>n>>m;
for(int i=1;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
x++;
y++;//这是第二个区别,楼上已经解释的很清楚了,由于题上说了,ai=0表示mzc,会有三个点WA
add(x,y,z);
}
sort(e+1,e+m+1);//STL库的快速排序,kruscal的惯例
kruscal();
printf("%d",ans);//输出~~~~
return 0;
}
好,现在我们即将进入prim
Prim
prim也称 逐步短接法 (是不是有点土),本质是搜索,其实有点像最短路问题中的Dijkstra算法,先给出短接的定义:
定义:
设Vi和Vj是无向图G=<V,E>中的任意两顶点,将Vi,Vj合并成一个顶点,记做V',称V'为超点,使得与Vi,Vj关联的边均与V'关联。这种做法称为Vi,Vj的短接
Prim的算法原理如下:
- (1)设e是G中非环带权最小的边(若带权最小的边不唯一,就任选一个作为e),将e的两端点Vi,Vj短接得起点V'。删除边e(相当于将e作为生成树的树枝)后,所得的图G'中若含有环就删除掉(相当于形成生成树的弦)。//搜索的过程
- (2)对G'重复(1),直到最后整个图变成一个起点为止。这时共进行n-1次短接,得n-1个树枝,m-n+1条弦。
可以看到,在我的程序中出现了堆排序优化,不懂的同学请戳这里
堆排序
当然,除了我这种堆排序的写法,还有Priority_queue即优先队列的写法,但我测试过,我这种写法,至少快1/3。若果还是不懂我这种写法的,戳这里
优先队列
贴代码
#include<bits/stdc++.h>
using namespace std;
int n,m;
int ans=0;
struct edge
{
int next,to,v;
}e[400000+10<<1];
int head[2300+10],ei=0;
int add(int x,int y,int v)
{
ei++;
e[ei].to=y;
e[ei].next=head[x];
head[x]=ei;
e[ei].v=v;
}//与上一方法相同
struct node
{
int id,v;
bool operator<(const node &n)const
{
return v>n.v;
}//堆排序时要用,重载<,使得进去的数上小下大
};
node heap[400000+10];//堆
int heaplen = 0; //堆的长度
int pushHeap(int x,int v)
{
heap[heaplen].id = x;
heap[heaplen].v = v;
heaplen++;
push_heap(heap,heap+heaplen);
}//入堆
node popHeap()
{
pop_heap(heap,heap+heaplen);
heaplen--;
return heap[heaplen];
}//出堆
int used[400000+10];//堆栈优化,不然要炸
/*int blcnt=0;*/
int prim()
{
pushHeap(1,0);//先把第一个数和其边权(因为没有下一节点,所以是0) 入堆
while(heaplen)//搜索
{
node f1=popHeap(); //出堆并记录顶上的一个数
if(used[f1.id]==1)
{
continue;
}
used[f1.id]=1;
ans+=f1.v;
/*blcnt++;
if(blcnt==n)
{
printf("%d",ans);
}
和上一个方法一样,不需要判断
*/
for(int i=head[f1.id];i;i=e[i].next)//遍历前向星
{
if(used[e[i].to]==0)
{
pushHeap(e[i].to,e[i].v);//入堆
}
}
}
}
int main()
{
cin>>n>>m;
for(int i=1;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
x++;
y++;//同上一种方法
add(x,y,z);
add(y,x,z);//双向存储
}
prim();
printf("%d",ans);//输出~~~
return 0;
}
现在说一下这道题容易出错的地方
但在写的时候遇到了一点bug,以为数据中的人是 有编号为0的 ,那么我的并查集的写法就会 因为标记的值和0重复了而被卡掉 ,所以就 人为的将每一个编号放大1 ,然后就A了
如果有小伙伴们不懂链式前向星这种存储方式,戳这里
链式前向星
如果大家觉得我讲的你不懂,请参考下面这位大佬的讲解
Prim和Kruscal
最后推荐几道题:
最后,衷心祝愿每一个人都能实现自己的梦想,得到省一
理想的梦,
希望的梦,
希望中,
那理想的梦,
像一幅春天的画卷,
在不懈的期盼中,
悄悄的在梦中闪现。
阻挠,
蔑视,
肆意的嘲笑,
还有那狂妄的***难,
这一刻,
像这冬日的寒风,
飘到了九霄云外。
理想的梦,
生命中的梦,
生命中,
那激情的火焰,
像冬日燃烧的枯草,
在寒风中熊熊的燃烧。
燃烧中,
我恍然站在了那泰山之巅,
遥望起了那远方的苍海云天。
遥望中,
东方升起了一轮红日,
这红日是如此的绚丽,
如此的闪耀。
闪耀中,
一阵细雨,
突然飘来。
雨中的我,
恍然如梦。