Elasticsearch 索引管理和内核探秘

1. 创建索引,修改索引,删除索引

//创建索引
PUT /my_index
{
  "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 0
  },
  "mappings": {
    "my_type": {
      "properties": {
        "my_field": {
          "type": "text"
        }
      }
    }
  }
}

//修改索引
PUT /my_index/_settings
{
    "number_of_replicas": 1
}

//删除索引
DELETE /my_index
DELETE /index_one,index_two
DELETE /index_*
DELETE /_all

2. 默认分词器standard

standard tokenizer:以单词边界进行切分
standard token filter:什么都不做
lowercase token filter:将所有字母转换为小写
stop token filer(默认被禁用):移除停用词,比如a the it等等

修改分词器设置:

启用english停用词token filter

PUT /my_index
{
  "settings": {
    "analysis": {
      "analyzer": {
        "es_std": {
          "type": "standard",
          "stopwords": "_english_"
        }
      }
    }
  }
}

3.内核--type底层数据结构

type,是一个index中用来区分类似的数据的,类似的数据但可能有不同的fields;
field的value,在底层的lucene中建立索引的时候,全部是opaque bytes类型,不区分类型的,因为lucene是没有type的概念的,在document中,实际上将type作为一个document的field来存储,即_type,es通过_type来进行type的过滤和筛选;
一个index中的多个type,实际上是放在一起存储的,因此一个index下,不能有多个type重名,而类型或者其他设置不同的,因为那样是无法处理的;

最佳实践,将类似结构的type放在一个index下,这些type应该有多个field是相同的;
假如说,你将两个type的field完全不同,放在一个index下,那么就每条数据都至少有一半的field在底层的lucene中是空值,会有严重的性能问题;

//底层存储,一个index下所有的field都会存储,对于不同type下的字段若不存在,则置为空;
{
  "_type": "elactronic_goods",
  "name": "geli kongtiao",
  "price": 1999.0,
  "service_period": "one year",
  "eat_period": ""
}

{
  "_type": "fresh_goods",
  "name": "aozhou dalongxia",
  "price": 199.0,
  "service_period": "",
  "eat_period": "one week"
}

4. 定制dynamic策略和dynamic mapping策略

定制dynamic策略:

true:遇到陌生字段,就进行dynamic mapping;
false:遇到陌生字段,就忽略;
strict:遇到陌生字段,就报错;

dynamic mapping策略:

1)date_detection

默认会按照一定格式识别date,比如yyyy-MM-dd。但是如果某个field先过来一个2017-01-01的值,就会被自动dynamic mapping成date,后面如果再来一个"hello world"之类的值,就会报错。可以手动关闭某个type的date_detection,如果有需要,自己手动指定某个field为date类型。

PUT /my_index/_mapping/my_type
{
    "date_detection": false
}

2)定制自己的dynamic mapping template(type level)

PUT /my_index
{
    "mappings": {
        "my_type": {
            "dynamic_templates": [
                { "en": {
                      "match":              "*_en", 
                      "match_mapping_type": "string",
                      "mapping": {
                          "type":           "string",
                          "analyzer":       "english"
                      }
                }}
            ]
}}}
PUT /my_index/my_type/1
{
  "title": "this is my first article"
}
PUT /my_index/my_type/2
{
  "title_en": "this is my first article"
}

title没有匹配到任何的dynamic模板,默认就是standard分词器,不会过滤停用词,is会进入倒排索引,用is来搜索是可以搜索到的
title_en匹配到了dynamic模板,就是english分词器,会过滤停用词,is这种停用词就会被过滤掉,用is来搜索就搜索不到了

3)定制自己的default mapping template(index level)

PUT /my_index
{
    "mappings": {
        "_default_": {
            "_all": { "enabled":  false }
        },
        "blog": {
            "_all": { "enabled":  true  }
        }
    }
}

5. 重建索引

一个field的设置是不能被修改的,如果要修改一个Field,那么应该重新按照新的mapping,建立一个index,然后将数据批量查询出来,重新用bulk api写入index中;批量查询的时候,建议采用scroll api,并且采用多线程并发的方式来reindex数据,每次scoll就查询指定日期的一段数据,交给一个线程即可;

1)一开始,依靠dynamic mapping,插入数据,但是些数据是2017-01-01这种日期格式的,所以title这种field被自动映射为了date类型,实际上它应该是string类型的;

2)当后期向索引中加入string类型的title值的时候,就会报错;如果此时想修改title的类型,是不可能的;

3)唯一的办法是进行reindex,也就是说,重新建立一个索引,将旧索引的数据查询出来,再导入新索引;

4)如果说旧索引的名字,是old_index,新索引的名字是new_index,终端java应用,已经在使用old_index在操作了,难道还要去停止java应用,修改使用的index为new_index,才重新启动java应用吗?这个过程中,就会导致java应用停机,可用性降低;所以说,给java应用一个别名,这个别名是指向旧索引的,java应用先用着,java应用先用goods_index alias来操作,此时实际指向的是旧的my_index;     PUT /my_index/_alias/goods_index

5)新建一个index,调整其title的类型为string;

6)使用scroll api将数据批量查询出来;采用bulk api将scoll查出来的一批数据,批量写入新索引;

POST /_bulk
{ "index":  { "_index": "my_index_new", "_type": "my_type", "_id": "2" }}
{ "title":    "2017-01-02" }

7)反复循环6,查询一批又一批的数据出来,采取bulk api将每一批数据批量写入新索引

8)将goods_index alias切换到my_index_new上去,java应用会直接通过index别名使用新的索引中的数据,java应用程序不需要停机,零提交,高可用;

POST /_aliases
{
    "actions": [
        { "remove": { "index": "my_index", "alias": "goods_index" }},
        { "add":    { "index": "my_index_new", "alias": "goods_index" }}
    ]
}

9)直接通过goods_index别名来查询,GET /goods_index/my_type/_search

5.2 基于alias对client透明切换index
PUT /my_index_v1/_alias/my_index

client对my_index进行操作
reindex操作,完成之后,切换v1到v2
POST /_aliases
{
    "actions": [
        { "remove": { "index": "my_index_v1", "alias": "my_index" }},
        { "add":    { "index": "my_index_v2", "alias": "my_index" }}
    ]
}

6. 倒排索引不可变的好处

(1)不需要锁,提升并发能力,避免锁的问题;
(2)数据不变,一直保存在os cache中,只要cache内存足够;
(3)filter cache一直驻留在内存,因为数据不变;
(4)可以压缩,节省cpu和io开销;

倒排索引不可变的坏处:每次都要重新构建整个索引;

7. document写入的内核级原理

(1)数据写入buffer缓冲和translog日志文件

(2)每隔一秒钟,buffer中的数据被写入新的segment file,并进入os cache,此时segment被打开并供search使用,不立即执行commit;--实现近实时;

数据写入os cache,并被打开供搜索的过程,叫做refresh,默认是每隔1秒refresh一次。也就是说,每隔一秒就会将buffer中的数据写入一个新的index segment file,先写入os cache中。所以,es是近实时的,数据写入到可以被搜索,默认是1秒。

(3)buffer被清空

(4)重复1~3,新的segment不断添加,buffer不断被清空,而translog中的数据不断累加

(5)当translog长度达到一定程度的时候,commit操作发生

(5-1)buffer中的所有数据写入一个新的segment,并写入os cache,打开供使用

(5-2)buffer被清空

(5-3)一个commit ponit被写入磁盘,标明了所有的index segment;会有一个.del文件,标记了哪些segment中的哪些document被标记为deleted了;

(5-4)filesystem cache中的所有index segment file缓存数据,被fsync强行刷到磁盘上

(5-5)现有的translog被清空,创建一个新的translog

//调整刷新的频率
PUT /my_index
{
  "settings": {
    "refresh_interval": "30s" 
  }
}

默认会在后台执行segment merge操作,在merge的时候,被标记为deleted的document也会被彻底物理删除;

每次merge操作的执行流程:

(1)选择一些有相似大小的segment,merge成一个大的segment;
(2)将新的segment flush到磁盘上去;
(3)写一个新的commit point,包括了新的segment,并且排除旧的那些segment;
(4)将新的segment打开供搜索;
(5)将旧的segment删除;

POST /my_index/_optimize?max_num_segments=1,尽量不要手动执行,让它自动默认执行;

posted @ 2018-10-23 15:57  bwwbww  阅读(365)  评论(0编辑  收藏  举报