UVA11212-Editing a Book(迭代加深搜索)

Problem UVA11212-Editing a Book

Accept:572  Submit:4428

Time Limit: 10000 mSec

 Problem Description

 

You have n equal-length paragraphs numbered 1 to n. Now you want to arrange them in the order of 1,2,...,n. With the help of a clipboard, you can easily do this: Ctrl-X (cut) and Ctrl-V (paste) several times. You cannot cut twice before pasting, but you can cut several contiguous paragraphs at the same time - they’ll be pasted in order. For example, in order to make {2, 4, 1, 5, 3, 6}, you can cut 1 and paste before 2, then cut 3 and paste before 4. As another example, one copy and paste is enough for {3, 4, 5, 1, 2}. There are two ways to do so: cut {3, 4, 5} and paste after {1, 2}, or cut {1, 2} and paste before {3, 4, 5}.

 Input

The input consists of at most 20 test cases. Each case begins with a line containing a single integer n (1 < n < 10), thenumber of paragraphs. The next line contains a permutation of 1,2,3,...,n. The last case is followed by a single zero, which should not be processed.

 

 Output

For each test case, print the case number and the minimal number of cut/paste operations.

 

 Sample Input

6
2 4 1 5 3 6
5
3 4 5 1 2
0
 

 Sample Ouput

Case 1: 2

Case 2: 1

 

题解:第一到IDA*算法的题目。迭代加深搜索,就是在普通DFS上加了个深度限制,如果目前的深度无法得到结果,就让深度限制变大,直到找到解。该算法中最重要的就是估价函数,用该函数进行剪枝操作,当前深度为d,如果最理想的情况下还要搜索h层,那么当d+h > maxd时显然就可以剪枝,其余部分和普通dfs区别不大。

续:今天对这道题又进行了一个小小的尝试,收获很大。之所以对它进行二次尝试,主要是因为第一次写时按照lrj的思路copy的,想真正自己实现一次,这次实现完全以lrj在讲解该算法时的思路为框架进行code,dfs第一步判断深度是否达到maxd,达到了就进行判断是否成立,返回信息。关键在于下一步的是先枚举还是先剪枝,如果先剪枝,两个代码的效率几乎没有差距,如果先枚举,直接TLE,这份代码用时640ms而限制是10000ms,这一个顺序使得效率差了十倍不止,仔细想了想,先剪枝与后剪枝相比,把剪枝操作提前了一层,对于每一层都有很多节点的搜索来说是很不划算的。千万注意这个顺序!!!

 

复制代码
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cstdlib>
 5 #include <algorithm>
 6 
 7 using namespace std;
 8 
 9 const int maxn = 9;
10 int n,order[maxn];
11 int maxd;
12 
13 int cal() {
14     int cnt = 0;
15     for (int i = 0; i < n-1; i++) {
16         if (order[i] != order[i + 1] - 1) cnt++;
17     }
18     if (order[n - 1] != n) cnt++;
19     return cnt;
20 }
21 
22 bool is_sorted() {
23     for (int i = 0; i < n - 1; i++) {
24         if (order[i] >= order[i + 1]) return false;
25     }
26     return true;
27 }
28 
29 bool dfs(int d) {
30     if (3 * d + cal() > maxd * 3) return false;
31     if (is_sorted()) return true;
32 
33     int old[maxn],now[maxn];
34     memcpy(old, order, sizeof(order));
35     for (int i = 0; i < n; i++) {
36         for (int j = i; j < n; j++) {
37             int cnt = 0;
38             for (int k = 0; k < n; k++) {
39                 if (k < i || k > j) {
40                     now[cnt++] = order[k];
41                 }
42             }
43             for (int k = 0; k <= cnt; k++) {
44                 int cnt2 = 0;
45                 for (int p = 0; p < k; p++) order[cnt2++] = now[p];
46                 for (int p = i; p <= j; p++) order[cnt2++] = old[p];
47                 for (int p = k; p < cnt; p++) order[cnt2++] = now[p];
48                 if (dfs(d + 1)) return true;
49                 memcpy(order, old, sizeof(order));
50             }
51         }
52     }
53     return false;
54 }
55 
56 int iCase = 1;
57 
58 int main()
59 {
60     //freopen("input.txt", "r", stdin);
61     while (~scanf("%d", &n) && n) {
62         for (int i = 0; i < n; i++) {
63             scanf("%d", &order[i]);
64         }
65         for (maxd = 0; maxd < n; maxd++) {
66             if (dfs(0)) break;
67         }
68         printf("Case %d: %d\n", iCase++, maxd);
69     }
70     return 0;
71 }
复制代码

 

posted on   随缘&不屈  阅读(329)  评论(0编辑  收藏  举报

努力加载评论中...

导航

点击右上角即可分享
微信分享提示