已知路面同一位置不同高度2点, 获取此两点坐标

已知相机内参以及与路面坐标系的之间的外参, 若已知路面同一位置不同高度2点A, B的图片坐标(u0, v0), (u1, v1), 求此两点世界坐标系下坐标, 不妨设A(x0, y0, z0), B(x0, y0, z1)

-w444

世界坐标系 => 相机坐标系

\[\begin{align*} \begin{bmatrix} x_c\\y_c\\z_c \end{bmatrix}= \begin{bmatrix} r_{00} & r_{01} & r_{02} & t_0 \\ r_{10} & r_{11} & r_{12} & t_1 \\ r_{20} & r_{21} & r_{22} & t_2 \\ \end{bmatrix} \begin{bmatrix} x_w\\y_w\\z_w \\1 \end{bmatrix} \end{align*} \]

相机坐标系 => 像素坐标系

\[\begin{align*} s\begin{bmatrix} u\\v\\1 \end{bmatrix} &= \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_c\\y_c\\z_c \end{bmatrix} \end{align*} \]

由如上可得

\[ \left\{ \begin{aligned} \frac{r_{00}x_w + r_{01}y_w + r_{02}z_w + t_0}{r_{20}x_w + r_{21}y_w + r_{22}z_w + t_2} =\frac{x_c}{z_c} = \frac{u-c_x}{f_x} = a \\ \frac{r_{10}x_w + r_{11}y_w + r_{12}z_w + t_1}{r_{20}x_w + r_{21}y_w + r_{22}z_w + t_2} = \frac{y_c}{z_c} = \frac{v-c_y}{f_y} =b \end{aligned} \right. \]

\[ \left\{ \begin{aligned} (r_{00}-ar_{20})x_w + (r_{01}-ar_{21})y_w + (r_{02}-ar_{22})z_w = at_2 - t_0 \\ (r_{10}-br_{20})x_w + (r_{11}-br_{21})y_w + (r_{12}-br_{22})z_w = bt_2 - t_1 \end{aligned} \right. \]

\[ \left\{ \begin{aligned} a_0 = \frac{u_0-c_x}{f_x} \\ b_0 = \frac{v_0-c_y}{f_y} \\ a_1 = \frac{u_1-c_x}{f_x} \\ b_1 = \frac{v_1-c_y}{f_y} \\ \end{aligned} \right. \]

\[ \left\{ \begin{aligned} (r_{00}-a_0r_{20})x_0 + (r_{01}-a_0r_{21})y_0 + (r_{02}-a_0r_{22})z_0 + 0z_1 = a_0t_2 - t_0 \\ (r_{10}-b_0r_{20})x_0 + (r_{11}-b_0r_{21})y_0 + (r_{12}-b_0r_{22})z_0 + 0z_1 = b_0t_2 - t_1 \\ (r_{00}-a_1r_{20})x_0 + (r_{01}-a_1r_{21})y_0 + 0z_0 + (r_{02}-a_1r_{22})z_1 = a_1t_2 - t_0 \\ (r_{10}-b_1r_{20})x_0 + (r_{11}-b_1r_{21})y_0 + 0z_0 + (r_{12}-b_1r_{22})z_1 = b_1t_2 - t_1 \\ \end{aligned} \right. \]

\[\begin{bmatrix} (r_{00}-a_0r_{20}) & (r_{01}-a_0r_{21}) & (r_{02}-a_0r_{22}) & 0 \\ (r_{10}-b_0r_{20}) & (r_{11}-b_0r_{21}) & (r_{12}-b_0r_{22}) & 0 \\ (r_{00}-a_1r_{20}) & (r_{01}-a_1r_{21})& 0 & (r_{02}-a_1r_{22})\\ (r_{10}-b_1r_{20}) & (r_{11}-b_1r_{21}) & 0 & (r_{12}-b_1r_{22})\\ \end{bmatrix} \begin{bmatrix}x_0 \\ y_0 \\z_0 \\z_1 \end{bmatrix} = \begin{bmatrix}a_0t_2 - t_0 \\ b_0t_2 - t_1 \\a_1t_2 - t_0 \\b_1t_2 - t_1 \end{bmatrix} \]

\[x=A^{-1}b \]

问题反馈:上面的方案看起来合理, 可是列式计算时, 发现解法不正确. 记上述四元四次方程组为 Ax=b, 其中A有一个特征值特别小, 也就是说Det(A)的秩为3, 方程有无穷解. 猜测原因, 如下图, 已知P1, P2点坐标, 可以有无穷组同一位置不同高度的点组与之对应.
-w399

此时如果能知道a1, a2点实际的高度差, 那么该问题就变成了3元3次问题, 可解(已经验证)

posted @ 2020-03-08 14:32  nowgood  阅读(379)  评论(1编辑  收藏  举报