[LGP4859,...] 一类奇怪的容斥套DP
漫山遍野都是fake的光影。
题目
-
[LGP4859] 已经没有什么好害怕的了
给定两个长度为n的数组a和b,将a中元素与b中元素配对,求满足ai>bj的配对(i,j)个数减去满足ai<bi的配对(i,j)个数恰好为k的方案数,保证ab中无重复元素。
-
[某年NOI欢乐赛] 决斗
给定两个长度为n的数组a和b,将a中元素与b中元素随机配对,求满足ai≥bj的配对(i,j)个数k次方的期望。
题解
对于前一个问题,我们转换为求满足ai>(≥)bj的配对(i,j)恰好为k=(n+k)/2的方案数。这样就能与第二个问题形式上保持一致。称这样配对的配对为“配对”(雾)。
其次将ab从小到大排序,然后依次为a数组配对,设f[i,j]表示前i个位置上确定了j个“配对”的方案数(跳过剩下的i-j对不为“配对”的配对的转移),w[i]表示满足bj≤ai的最大的j,有转移 f[i,j]=f[i-1,j]+f[i-1,j-1]*(w[i]-j+1)。后边那个系数其实是(w[i]-w[i-1])+(w[i-1]-(j-1))得来的。
如果你有兴趣尝试dp前i个位置上恰好有j个配对,会发现不为“配对”的情况根本dp不动。
考虑对f[n,i]统一确定剩下的(n-i)个配对,记g[i]=f[n,i]*(n-i)!。显然g[i]的统计是有重复的。具体的,设h[i]为恰好有i个“配对”的方案数,h[i]在g[j]中被统计C(i,j)次,其中i≥j。
即g[i]=Σ[j≥i] h[j]*C(j,i),移项得h[i]=g[i] Σ[j>i] h[j]*C(j,i),可以递推求解了。
后一个问题的后续操作已经不重要了你说是吧
参考实现
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=2019;
const int mod=1e9+9;
int n,K,a[N],b[N],w[N],f[N][N],c[N][N];
int main() {
scanf("%d%d",&n,&K);
for(int i=1; i<=n; ++i) scanf("%d",a+i);
for(int i=1; i<=n; ++i) scanf("%d",b+i);
if((n+K)&1) {
puts("0");
return 0;
}
K=(n+K)/2;
sort(a+1,a+n+1);
sort(b+1,b+n+1);
for(int i=1,j=0; i<=n; ++i) {
while(j<n&&b[j+1]<=a[i]) ++j;
w[i]=j;
}
for(int i=0; i<=n; ++i) {
c[i][0]=1;
for(int j=1; j<=i; ++j)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
}
f[0][0]=1;
for(int i=1; i<=n; ++i) {
f[i][0]=f[i-1][0];
int J=min(i,w[i]);
for(int j=1; j<=J; ++j)
f[i][j]=(f[i-1][j]+(ll)f[i-1][j-1]*(w[i]-j+1)%mod)%mod;
for(int j=J+1; j<=i; ++j)
f[i][j]=f[i-1][j];
}
int fc=1;
for(int i=n; i>=K; --i) {
w[i]=(ll)f[n][i]*fc%mod;
for(int j=i+1; j<=n; ++j)
w[i]=(w[i]+mod-(ll)w[j]*c[j][i]%mod)%mod;
fc=(ll)fc*(n-i+1)%mod;
}
printf("%d\n",w[K]);
return 0;
}