[P5170] 类欧几里得算法

“类欧几里得算法”第二题 P5170

【题意】已知\(n,a,b,c\),求

\[\begin{aligned} f_{1}(a,b,c,n)&=\sum_{i=0}^n\lfloor\dfrac{ai+b}{c}\rfloor\\ f_{2}(a,b,c,n)&=\sum_{i=0}^n\lfloor\dfrac{ai+b}{c}\rfloor^2\\ f_{3}(a,b,c,n)&=\sum_{i=0}^n\lfloor\dfrac{ai+b}{c}\rfloor*i\\ \end{aligned} \]

【预备】

\(m=\lfloor\dfrac{a\times n+b}{c}\rfloor,\ t_{1}=\lfloor\dfrac{a}{c}\rfloor,\ t_{2}=\lfloor\dfrac{b}{c}\rfloor\)

定义\([\text{expression}]\)为真值表达式。

简单的引理,当\(a,b,c\in Z​\)

  • \(a\le\lfloor\dfrac{b}{c}\rfloor \Rightarrow ac\le b ​\)
  • \(a< bc \Rightarrow t_{1}<b\)

【限界】a=0时直接计算。

【式一】对原式变形

\[f_{1}(a,b,c,n) =\sum_{i=0}^nt_{1}\times i+t_{2}+\lfloor\dfrac{(a\bmod c)\times i+(b\bmod c)}{c}\rfloor\\ =t_{1}\times\dfrac{n(n+1)}{2}+t_{2}\times(n+1)+ f_{1}(a\bmod c,b\bmod c,c,n) \]

\(t1=t2=0\)\(a<c\)\(b<c\)时,

\[f_{1}(a,b,c,n)= \sum_{i=0}^n\sum_{j=1}^m [j\le\dfrac{ai+b}{c}] =\sum_{i=0}^n\sum_{j=1}^m [j\le\lfloor\dfrac{ai+b}{c}\rfloor]\\ =\sum_{j=1}^m\sum_{i=0}^n[j\le\lfloor\dfrac{ai+b}{c}\rfloor] =\sum_{j=1}^m\sum_{i=0}^n[cj-b\le ai] =\sum_{j=1}^m\sum_{i=0}^n[cj-b-1< ai]\\ =\sum_{j=1}^m\sum_{i=0}^n[\lfloor\dfrac{cj-b-1}{a}\rfloor< i] =\sum_{j=1}^m(n-\lfloor\dfrac{cj-b-1}{a}\rfloor)\\ =mn-\sum_{i=1}^m\lfloor\dfrac{ci-b-1}{a}\rfloor =mn-\sum_{i=0}^{m-1}\lfloor\dfrac{ci+c-b-1}{a}\rfloor\\ =mn-f_{1}(c,c-b-1,a,m-1) \]

【式二】对原式变形

\[f_{2}(a,b,c,n) =\sum_{i=0}^n(t_{1}\times i+t_{2}+\lfloor\dfrac{(a\bmod c)\times i+(b\bmod c)}{c}\rfloor)^2\\ =\sum_{i=0}^n \begin{cases} (t_{1}\times i)^2+t_{2}^2+\lfloor\dfrac{(a\bmod c)\times i+(b\bmod c)}{c}\rfloor^2\\ +2t_{1}t_{2}*i\\ +2t_{1}i\lfloor\dfrac{(a\bmod c)\times i+(b\bmod c)}{c}\rfloor\\ +2t_{2}\lfloor\dfrac{(a\bmod c)\times i+(b\bmod c)}{c}\rfloor \end{cases}\\ =\begin{cases} t_{1}^2\sum_{i=0}^ni^2+t_{2}^2*(n+1)+f_{2}(a\bmod c,b\bmod c,c,n)\\ +2t_{1}t_{2}\sum_{i=0}^n i\\ +2t_{1}f_{3}(a\bmod c,b \bmod c,c,n)\\ +2t_{2}f_{1}(a\bmod c,b \bmod c,c,n) \end{cases}\\ \]

\(t1=t2=0\)\(a<c\)\(b<c​\)时,

\[f_{2}(a,b,c,d)= \sum_{i=0}^n\lfloor\dfrac{ai+b}{c}\rfloor =\sum_{i=0}^n\sum_{j=1}^m\sum_{k=1}^m[\lfloor\dfrac{cj-b-1}{a}\rfloor< i\text{ and }\lfloor\dfrac{ck-b-1}{a}\rfloor< i]\\ =\sum_{i=0}^n\sum_{j=1}^m\sum_{k=1}^m [\max(\lfloor\dfrac{cj-b-1}{a}\rfloor,\lfloor\dfrac{ck-b-1}{a}\rfloor)< i]\\ =\sum_{j=1}^m\sum_{k=1}^m \sum_{i=0}^n[\max(\lfloor\dfrac{cj-b-1}{a}\rfloor,\lfloor\dfrac{ck-b-1}{a}\rfloor)< i]\\ =\sum_{j=1}^m\sum_{k=1}^m n-\max(\lfloor\dfrac{cj-b-1}{a}\rfloor,\lfloor\dfrac{ck-b-1}{a}\rfloor)\\ =nm^2-\sum_{j=1}^m\sum_{k=1}^m\max(\lfloor\dfrac{cj-b-1}{a}\rfloor,\lfloor\dfrac{ck-b-1}{a}\rfloor)\\ =nm^2-2*\sum_{j=1}^m\lfloor\dfrac{cj-b-1}{a}\rfloor*(j-1)-\sum_{j=1}^m \lfloor\dfrac{cj-b-1}{a}\rfloor\\ =nm^2-\sum_{j=0}^{m-1} \lfloor\dfrac{cj+c-b-1}{a}\rfloor*j-\sum_{j=0}^{m-1} \lfloor\dfrac{cj+c-b-1}{a}\rfloor\\ =nm^2-f_{1}(c,c-b-1,a,m-1)-2*f_{3}(c,c-b-1,a,m-1) \]

【式三】对原式变形

\[f_{3}(a,b,c,n)=\sum_{i=0}^n\lfloor\dfrac{ai+b}{c}\rfloor*i =\sum_{i=0}^n (t_{1}\times i+t_{2}+\lfloor\dfrac{(a\bmod c)\times i+(b\bmod c)}{c}\rfloor)*i\\ =\sum_{i=0}^n t_{1}\times i^2+t_{2}\times i+\lfloor\dfrac{(a\bmod c)\times i+(b\bmod c)}{c}\rfloor\times i\\ =t_{1}\sum_{i=0}^ni^2+t_{2}\sum_{i=0}^ni+f_{3}(a\bmod c,b\bmod c,c,n) \]

\(t1=t2=0\)\(a<c\)\(b<c\)时,定义\(p(j)=\lfloor\dfrac{cj-b-1}{a}\rfloor\)

\[f3(a,b,c,d) =\sum_{i=0}^n\sum_{j=1}^m [j\le\lfloor\dfrac{ai+b}{c}\rfloor]*i =\sum_{j=1}^m\sum_{i=0}^n[\lfloor\dfrac{cj-b-1}{a}\rfloor< i]*i\\ =\sum_{j=1}^m\sum_{i=p(j)+1}^ni =\sum_{j=1}^m \dfrac{1}{2}(p(j)+1+n)(n-p(j))\\ =\sum_{j=1}^m \dfrac{1}{2}(n\times p(j)-p^2(j)+n-p(j)+n^2-n\times p(j))\\ =\sum_{j=1}^m \dfrac{1}{2}(-p^2(j)+n-p(j)+n^2)\\ =\dfrac{-f_{2}(c,c-b-1,a,m-1)-f_{1}(c,c-b-1,a,m-1)+nm+n^2m}{2} \]

【时间复杂度】如果每个都单独搜索的话,大概因该会炸吧。。考虑到三个函数的递归模式都很**,干脆用一个结构体存下三个值。再参考第一题的分析,状态数目是\(\log\)级别的。

#include <bits/stdc++.h>
#define LL long long 
using namespace std;
const LL mod=998244353;
const LL I2=499122177;
const LL I6=166374059;

inline LL s1(LL n) {return I2*n%mod*(n+1)%mod;}
inline LL s2(LL n) {return I6*n%mod*(n+1)%mod*(n+n+1)%mod;}

struct node {
	LL f1,f2,f3;
	node(LL f1=0,LL f2=0,LL f3=0):f1(f1),f2(f2),f3(f3){
//		assert(0<=f1 && 0<=f2 && 0<=f3);
//		assert(f1<mod && f2<mod && f3<mod);
	} 
};
node dfs(LL a,LL b,LL c,LL n) {
	if(!a||!n) return node(
		(b/c)*(n+1)%mod,
		(b/c)*(b/c)%mod*(n+1)%mod,
		(b/c)*s1(n)%mod
	);
	if(a>=c || b>=c) {
		LL t1=a/c, t2=b/c;
		node tmp=dfs(a%c,b%c,c,n);
		return node(
			(t1*s1(n)%mod+t2*(n+1)%mod+tmp.f1)%mod,
			(t1*t1%mod*s2(n)%mod
				+t2*t2%mod*(n+1)%mod
				+tmp.f2
				+2*t1%mod*t2%mod*s1(n)%mod
				+2*t1%mod*tmp.f3%mod
				+2*t2%mod*tmp.f1%mod
			)%mod,
			(t1*s2(n)%mod+t2*s1(n)%mod+tmp.f3)%mod
		);
	} else {
		LL m=(a*n+b)/c;
		node tmp=dfs(c,c-b-1,a,m-1);
		return node(
			(n*m%mod-tmp.f1+mod)%mod,
			(n*m%mod*m%mod-tmp.f1-2*tmp.f3%mod+mod+mod)%mod,
			(n*m%mod+n*n%mod*m%mod-tmp.f1-tmp.f2+mod+mod)%mod*I2%mod
		);
	}
} 

int main() {
	int T,a,b,c,n;
	scanf("%d",&T);
	while(T--) {
		scanf("%d%d%d%d",&n,&a,&b,&c);
		node tmp=dfs(a,b,c,n);
		printf("%lld %lld %lld\n",tmp.f1,tmp.f2,tmp.f3) ;
	}
	return 0;
}
posted @ 2019-01-21 21:53  nosta  阅读(207)  评论(0编辑  收藏  举报