[HAOI2017] 新型城市化

给出的图中恰包含2个团,则图的补图为一个二分图,其最大独立集为原图的最大团。

我们知道,二分图的最大独立集=V-最小顶点覆盖,最小顶点覆盖=最大匹配。

问题转化为:计算删去后最大匹配减小的边集。

所以建图跑最大流,对残余网络中的每一条满流边讨论。

这需要用到tarjan:若该满流边的端点同属一个强连通,那么通过该边的增广路不是必须的,这条边就不能算在答案里。

码吧。。 建图时要利用二分图染色。

请务必启用-std=gnu++11开关

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;

const int N=1e4+5;
const int L=5e5+5;
const int inf=0x3f3f3f3f;

int S=N-1,T=N-2;
int head[N],to[L],upp[L],last[L],cnt=1;
int que[N],lev[N],hd,tl;

inline void add_edge(int x,int y,int u1,int u2=0) {
	to[++cnt]=y,upp[cnt]=u1,last[cnt]=head[x],head[x]=cnt;
	to[++cnt]=x,upp[cnt]=u2,last[cnt]=head[y],head[y]=cnt; 
}
inline bool bfs() {
	memset(lev,0,sizeof lev);
	lev[S]=1;
	que[hd=0,tl=1]=S;
	while(hd<tl) {
		int x=que[++hd];
		for(int i=head[x]; i; i=last[i]) if(upp[i]>0 && !lev[to[i]]) 
			lev[to[i]]=lev[x]+1, que[++tl]=to[i];
	}
	return lev[T]!=0;
}
int dfs(int x,int tf) {
	if(x==T) return tf;
	int tot=0,tmp;
	for(int i=head[x]; i; i=last[i]) if(upp[i]>0 && lev[x]+1==lev[to[i]]) {
		tmp=dfs(to[i],min(tf-tot,upp[i]));
		if(tmp) upp[i]-=tmp,upp[i^1]+=tmp,tot+=tmp;
		if(tot==tf) break;
	}
	if(!tot) lev[x]=-1;
	return tot;
}

int n,m;
vector<int> e[N];
vector<pair<int,int>> ans;
int col[N],low[N],dfn[N],idx;
int sta[N],bel[N],tot,top;

void ran(int x) {
	for(int y: e[x]) if(!col[y]) 	
		col[y]=3^col[x], ran(y);
} 
void pre(int x) {
	dfn[x]=low[x]=++idx;
	sta[++top]=x;
	for(int i=head[x]; i; i=last[i]) if(upp[i]>0) {
		if(!dfn[to[i]]) {
			pre(to[i]);
			low[x]=min(low[x],low[to[i]]);
		} else if(!bel[to[i]]) 
			low[x]=min(low[x],dfn[to[i]]);
	}
	if(dfn[x]==low[x]) {
		tot++;
		do bel[sta[top]]=tot; while(sta[top--]!=x);
	}
}


int main() {
	scanf("%d%d",&n,&m);
	for(int x,y,i=m; i--; ) {
		scanf("%d%d",&x,&y);
		e[x].push_back(y);
		e[y].push_back(x);
	}
	for(int i=1; i<=n; ++i) {
		if(!col[i]) col[i]=1, ran(i);
	}
	for(int i=1; i<=n; ++i) {
		if(col[i]==1) {
			add_edge(S,i,1);
			for(int j:e[i]) add_edge(i,j,1);
		} else add_edge(i,T,1);
	}
	while(bfs()) dfs(S,inf);
	for(int i=1; i<=n; ++i) {
		if(!dfn[i]) pre(i);
	}
	if(!dfn[S]) pre(S);
	if(!dfn[T]) pre(T);
	for(int i=2; i<=cnt; i+=2) {
		if(upp[i]==0 && bel[to[i]]!=bel[to[i^1]] 
	&& to[i]!=S && to[i]!=T && to[i^1]!=S && to[i^1]!=T) 
			ans.push_back(make_pair(to[i],to[i^1]));
	}
	for(pair<int,int> &p:ans) {
		if(p.first>p.second) swap(p.first,p.second); 
	}
	sort(ans.begin(),ans.end());
	printf("%llu\n",ans.size());
	for(pair<int,int> p:ans) {
		printf("%d %d\n",p.first,p.second);
	}
	return 0;
}

posted @ 2018-12-24 10:24  nosta  阅读(340)  评论(0编辑  收藏  举报