Math: Fibonacci

https://www.zhihu.com/question/28062458

http://blog.csdn.net/hikean/article/details/9749391

 

   对于Fibonacci数列,1,1,2,3,5,8,13,21... 

   F(0) = 1, F(1) = 1, F(i) = F(i-1) + F(i-2) 求解第n项。

 

1、递归
long fib(int n)
{
    if (n == 0 || n == 1)
    {
        return 1;
    }
return fib(n-1) + fib(n-2); }
    这是最好写,也是效率最低的方法,时间复杂度是指数级别的。

 

2、遍历
long fib(int n)
{
    if (n == 0 || n == 1)
    {
       return 1;
    }
vector
<long> fibs(2, 1); for (int i = 2; i <= n; ++i) { fibs.push_back(fibs[i-1] + fibs[i-2]); }
return fibs[n]; }
    这个方法也是很容易想到的,时间复杂度是 O(n), 空间复杂度也是 O(n)。

 

3、遍历优化版
    fibs[n]只和前两个元素相关,因此任意时刻我们只要有前两项就可以了。这样空间复杂度可以做到 O(1),我们用个循环数组就可以了。
long fib(int n)
{
    if (n == 0 || n == 1)
    {
       return 1;
    }
 
    int fib[3];
    fib[0] = fib[1] = 1;
    int idx = 1;
    for (int i = 2; i <= n; ++i)
    {
        idx = (idx + 1) % 3;
        fib[idx] = fib[(idx + 2)%3] + fib[(idx + 1)%3];
    }
return fib[idx]; }

 

4、矩阵相乘
    把一维问题拉到二维。

所以,

    现在问题是如何快速计算一个矩阵的n次方。这里可以利用A^n = A^(n/2)*A^(n/2) * (n % 2 == 1 ? A : I)进行分治。
matrix power(matrix A, int n)
{
    matrix ans = I;
    while(n > 0)
    {
        if (n % 2 == 1)
        {
           ans *= A;
        }
A
*= A; n /= 2; }
return ans; }

    这个算法的时间复杂度是O(logN).

 

5、特征值分解

    对于矩阵的 n 次方求解,可以通过矩阵的特征值分解来完成。过程如下:



6、差分方程求解
    如果了解差分方程,那么这个解析解就很容易得到了。

 

 

posted @ 2016-07-27 17:09  朔方  阅读(225)  评论(0编辑  收藏  举报