Spring Cloud 分布式事务管理

在微服务如火如荼的情况下,越来越多的项目开始尝试改造成微服务架构,微服务即带来了项目开发的方便性,又提高了运维难度以及网络不可靠的概率.

 

在说微服务的优缺点时,有对比才会更加明显,首先说一下单体式结构

 

单体式架构

在单体式架构中,系统通常采用分层架构模式(MVC),持久化层、表示层,业务逻辑层。架构主要存在以下问题:

  1. 系统内部互相访问,耦合紧密导致难以维护;
  2. 各业务领域需要采用相同的技术栈,难以快速应用新技术(例如使用SSH很难向SSM改造);
  3. 对系统的任何修改都必须整个系统一起重新部署/升级;
  4. 在系统负载增加时,难以进行水平扩展;
  5. 当系统中一处出现问题,会影响整个系统;

为了克服以上缺点,微服务架构应运而生。微服务,又叫微服务架构。微服务就是一些协同工作的小而自治的服务.

微服务架构

优点:

1. 技术异构性

在不同的服务中,可以使用不同的技术来各自开发,只要保证服务间能相互协作即可

2. 弹性

当微服务中的某一个服务不可用时,不会影响整个系统,只会影响相关功能不可用

3. 扩展

易于扩展,使用小的多个服务,更加易于扩展新的功能

4. 简化部署

某个服务的更新部署,不需要重新部署整个应用

5. 可组合

通过组合多个服务,可以提供一些新的功能

6. 可替代

因为每个微服务都比较小,重新实现某一个服务或者直接删除该服务都是可操作的

缺点:

1. 复杂度高

微服务间通过REST、RPC等形式交互,相对于单体模式,需要考虑被调用方故障、过载、消息丢失等各种异常情况,代码逻辑更加复杂。

对于微服务间的事务性操作,因为不同的微服务采用了不同的数据库,将无法利用数据库本身的事务机制保证一致性,需要引入二阶段提交等技术。

同时,在微服务间存在少部分共用功能但又无法提取成微服务时,各个微服务对于这部分功能通常需要重复开发,或至少要做代码复制,以避免微服务间的耦合,增加了开发成本。

2. 运维复杂

在采用微服务架构时,系统由多个独立运行的微服务构成,需要一个设计良好的监控系统对各个微服务的运行状态进行监控。运维人员需要对系统有细致的了解才对够更好的运维系统。

3. 影响性能

相对于单体架构,微服务的间通过REST、RPC等形式进行交互,通信的时延会受到较大的影响。



 

分布式事务的引入

正如上面所说

 

对于微服务间的事务性操作,因为不同的微服务采用了不同的数据库,将无法利用数据库本身的事务机制保证一致性,需要引入二阶段提交等技术。

在单体项目中,很容易做到事务控制,而在多个服务之间很难实现

假设服务调用如下:

A B C D 的事务均在各个服务控制,如何做到,统一协调,保证数据的一致性?

分布式事务解决方案

基于XA协议的两阶段提交

XA是一个分布式事务协议,由提出。XA中大致分为两部分:事务管理器和本地资源管理器。其中本地资源管理器往往由数据库实现,比如Oracle、DB2这些商业数据库都实现了XA接口,而事务管理器作为全局的调度者,负责各个本地资源的提交和回滚。XA实现分布式事务的原理如下:
第一阶段:



 

第二阶段:

总的来说,XA协议比较简单,而且一旦商业数据库实现了XA协议,使用分布式事务的成本也比较低。但是,XA也有致命的缺点,那就是性能不理想,特别是在交易下单链路,往往并发量很高,XA无法满足高并发场景。XA目前在商业数据库支持的比较理想,在mysql数据库中支持的不太理想,mysql的XA实现,没有记录prepare阶段日志,主备切换回导致主库与备库数据不一致。许多nosql也没有支持XA,这让XA的应用场景变得非常狭隘。

消息事务+最终一致性

所谓的消息事务就是基于消息中间件的两阶段提交,本质上是对消息中间件的一种特殊利用,它是将本地事务和发消息放在了一个分布式事务里,保证要么本地操作成功成功并且对外发消息成功,要么两者都失败,开源的RocketMQ就支持这一特性.

该方案采用最终一致的,牺牲了一致性,换来了性能的大幅度提升。存在造成数据不一致的风险

TCC编程模式

所谓的TCC编程模式,也是两阶段提交的一个变种。TCC提供了一个编程框架,将整个业务逻辑分为三块:Try、Confirm和Cancel三个操作。以在线下单为例,Try阶段会去扣库存,Confirm阶段则是去更新订单状态,如果更新订单失败,则进入Cancel阶段,会去恢复库存。总之,TCC就是通过代码人为实现了两阶段提交,不同的业务场景所写的代码都不一样,复杂度也不一样,因此,这种模式并不能很好地被复用。

 

posted @ 2019-06-23 13:30  随★风  阅读(9622)  评论(0编辑  收藏  举报