D. Ehab the Xorcist(异或和关系)
题意:求最短的一组数,使这些数异或为u,和为v。
解法:1、可知奇偶性对于异或和加法来说是等价的,所以u、v奇偶性相同才满足条件。2、一个数拆成几个数异或一定不大于原数,所以u <= v。
3、当u==v&&u==0,为0,4、u==v&&u != 0,等于u
5、u ^ 0 = 0 , 考虑拆成3个数,u , (v-u)/2, (v-u)/2.满足。
6、最短,根据a ^ b = a + b - 2 * (a & b). 假设答案为a ,b . a ^ b = (u ^ x) ^ x , a + b = (u + x) + x .如果u^x = u + x .则可以合并。
#include<bits/stdc++.h> using namespace std; typedef long long ll ; #define int ll #define mod 998244353 #define gcd(m,n) __gcd(m, n) #define rep(i , j , n) for(int i = j ; i <= n ; i++) #define red(i , n , j) for(int i = n ; i >= j ; i--) #define ME(x , y) memset(x , y , sizeof(x)) int lcm(int a , int b){return a*b/gcd(a,b);} ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;} //int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;} //const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len} #define INF 0x3f3f3f3f #define PI acos(-1) #define pii pair<int,int> #define fi first #define se second #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 #define pb push_back #define mp make_pair #define all(v) v.begin(),v.end() #define size(v) (int)(v.size()) #define cin(x) scanf("%lld" , &x); const int N = 1e7+9; const int maxn = 2e5+9; const double esp = 1e-6; void solve(){ int u , v ; cin >> u >> v ; if(u > v || u % 2 != v % 2){ cout << -1 << endl; return; } if(u == v && v == 0){ cout << u << endl; return; } if(u == v && v != 0){ cout << 1 << endl << u << endl; return ; } int a = (v - u) / 2 ; if((a ^ u) == a + u){ cout << 2 << endl; cout << (u + v) / 2 << " " << a << endl; }else{ cout << 3 << endl; cout << u << " " << a << " " << a << endl; } } signed main() { //ios::sync_with_stdio(false); int t ; //scanf("%lld" , &t); //while(t--) solve(); }