二分查找(二分+递推)
http://poj.org/problem?id=1759
题意:有一个花环,旁边挂灯泡,总共n个灯泡,第Hi个灯泡的高度是H(i+1) 和 H(i-1)高度的平均值减1.
H1 = A
Hi = (H i-1 + H i+1)/2 - 1, for all 1 < i < N
HN = B
Hi >= 0, for all 1 <= i <= N
现在给出总共灯泡的个数n,以及第一个灯泡的高度,求最右边的灯泡的最低高度。
解法:将递推式转变一下,Hi = 2*Hi-1 + 2 - Hi-2 .可知Hi 与 Hi-1成正相关。也可知Hn与H2成正相关。
所以二分找满足条件的H2的最小值,对应递推的Hn
//#include<bits/stdc++.h> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <iostream> #include <string> #include <stdio.h> #include <queue> #include <stack> #include <map> #include <set> #include <string.h> #include <vector> typedef long long ll ; #define int ll #define mod 1000000007 #define gcd __gcd #define rep(i , j , n) for(int i = j ; i <= n ; i++) #define red(i , n , j) for(int i = n ; i >= j ; i--) #define ME(x , y) memset(x , y , sizeof(x)) //ll lcm(ll a , ll b){return a*b/gcd(a,b);} //ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;} //int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;} //const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len} #define INF 0x3f3f3f3f #define PI acos(-1) #define pii pair<int,int> #define fi first #define se second #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 #define pb push_back #define mp make_pair #define cin(x) scanf("%lld" , &x); using namespace std; const int N = 1e7+9; const int maxn = 1e5+9; const double esp = 1e-2; int n; double a ; double b[4]; double ans; bool check(double x){ b[1] = a ; b[2] = x ; for(int i = 3 ; i <= n ; i++){ b[3] = (2.0*b[2]+2) - b[1]; b[1] = b[2]; b[2] = b[3]; if(b[3] < 0) return false; } ans = b[3]; return true; } void solve(){ double l = 0 , r = a ; for(int i = 0 ; i < 100 ; i++){ double mid = (l + r) / 2 ; if(check(mid)) r = mid ; else l = mid ; } printf("%.2f\n" , ans); } signed main() { //ios::sync_with_stdio(false); //cin.tie(0); cout.tie(0); //int t ; //cin(t); //while(t--){ while(~scanf("%lld%lf" , &n , &a)) solve(); //} }