离散化+单点更新+区间求和
https://codeforces.com/contest/1311/problem/F
题意:在坐标轴上有n个点,每个点在xi位置(不会重叠),且具有vi的固定速度,问所有对点之间的最短距离之和。
解法:可分析得当xi > yi && vi > yi 得最短距离为xi-yi,其他情况均为0.
以x排序,统计比xi小得坐标且速度比vi小的个数sum1和坐标和sum2。
该点贡献可算的sum1*xi - sum2 .因为v的范围较大所以要离散化。
#include<bits/stdc++.h> typedef long long ll ; #define int ll #define mod 1000000007 #define gcd __gcd #define rep(i , j , n) for(int i = j ; i <= n ; i++) #define red(i , n , j) for(int i = n ; i >= j ; i--) #define ME(x , y) memset(x , y , sizeof(x)) //ll lcm(ll a , ll b){return a*b/gcd(a,b);} //ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;} //int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;} //const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len} #define SC scanf #define INF 0x3f3f3f3f #define PI acos(-1) #define pii pair<int,int> #define fi first #define se second #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 using namespace std; const int maxn = 2e5+9; const int N = 10000 ; int s1[maxn] , s2[maxn]; pii a[maxn]; int b[maxn] , len; int lowerbit(int x){ return x&(-x); } void add(int x , int val){ while(x <= len){ s1[x]++; s2[x] += val; x += lowerbit(x); } } int getsum(int x , int s[]){ int ans = 0 ; while(x){ ans += s[x]; x -= lowerbit(x); } return ans ; } void solve(){ int n ; cin >> n ; rep(i , 1 , n){ cin >> a[i].fi ; } rep(i , 1 , n){ cin >> a[i].se; b[i] = a[i].se; } int ans = 0 ; sort(b + 1 , b + 1 + n); sort(a + 1 , a + 1 + n); len = unique(b + 1 , b + 1 + n) - b - 1 ; rep(i , 1 , n){ int pos = lower_bound(b + 1 , b + 1 + len , a[i].se) - b ; int sum1 = getsum(pos , s1) , sum2 = getsum(pos , s2); ans += sum1 * a[i].fi - sum2 ; add(pos , a[i].fi); } cout << ans << endl; } signed main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); //int t ; //cin >> t ; //while(t--){ solve(); //} }